Search

Top 60 Oracle Blogs

Recent comments

July 2018

#Exasol Cluster Architecture

This article gives a more detailed view on the Exasol Cluster Architecture. A high level view is provided here.

Exasol Cluster Nodes: Hardware

An Exasol Cluster is built with commodity Intel servers without any particular expensive components. SAS hard drives and Ethernet Cards are sufficient. Especially there is no need for an additional storage layer like a SAN.

See here for a list of Exasol Certified Servers.

Google Cloud Spanner – no decimal numeric data types

Google Cloud Spanner is a distributed relational database focused on scalability without compromising consistency and integrity. It is available only as a managed service in Google Cloud. Basically, the idea is to keep the scalability advantages of NoSQL database (like Bigtable) but adding transactions, relational tables, SQL, structured data,… as in the relational databases we love for decades.
The commercial pitch includes all the NoSQL buzzwords, with the addition of the legacy properties of SQL databases:
Cloud Spanner is a fully managed, mission-critical, relational database service that offers transactional consistency at global scale, schemas, SQL (ANSI 2011 with extensions), and automatic, synchronous replication for high availability.
Here I’m testing something that is not mentioned, but is taken for granted with all SQL databases: the ability to add numbers without erroneous arithmetic results.

Direct IOT

A recent (automatic ?) tweet from Connor McDonald highlighted an article he’d written a couple of years ago about an enhancement introduced in 12c that allowed for direct path inserts to index organized tables (IOTs). The article included a demonstration seemed to suggest that direct path loads to IOTs were of no benefit, and ended with the comment (which could be applied to any Oracle feature): “Direct mode insert is a very cool facility, but it doesn’t mean that it’s going to be the best option in every situation.”

Drilling down the pgSentinel Active Session History

In pgSentinel: the sampling approach for PostgreSQL I mentioned that one of the advantages of the ASH approach is the ability to drill down from an overview of the database activity, down to the details where we can do some tuning. The idea is to always focus on the components which are relevant to our tuning goal:

Quiz Night

Because it’s been a long time since the last quiz night.  Here’s a question prompted by a recent thread on the ODevCom database forum – how many rows will Oracle sorts (assuming you have enough rows to start with in all_objects) for the final query, and how many sort operations will that take ?


drop table t1 purge;

create table t1 nologging as select * from all_objects where rownum < 50000;

select owner, count(distinct object_type), count(distinct object_name) from t1 group by owner;

Try to resist the temptation of doing a cut-n-paste and running the code until after you’ve thought about the answer.

PostgreSQL Active Session History extension is now publicly available

Publicly available

A quick one to let you know that the pgsentinel extension providing active session history sampling is now publicly available.

You can find more details on it into this previous blog post and also from some early beta testers:

pushing predicates

I came across this odd limitation (maybe defect) with pushing predicates (join predicate push down) a few years ago that made a dramatic difference to a client query when fixed but managed to hide itself rather cunningly until you looked closely at what was going on. Searching my library for something completely different I’ve just rediscovered the model I built to demonstrate the issue so I’ve tested it against a couple of newer versions  of Oracle (including 18.1) and found that the anomaly still exists. It’s an interesting little detail about checking execution plans properly so I’ve written up the details. The critical feature of the problem is a union all view:

Month Over Month and Newer Schtuff- Power BI

Today’s Post is brought to you by Patrick LeBlanc of Guy in a Cube.  I learn best by doing, so I was working with different features while watching along on Quick Measures:

As a newbie, yes, I had problems with my quick measures just as Patrick said I would, but with a twist-  It wasn’t that I didn’t want to learn DAX, quite the opposite, I could get the expression to work just fine  with DAX, but couldn’t seem to get the hang of the quick measure.  Leave it to me to have challenges with the *simpler* method… </p />
</p></div>

    	  	<div class=

pgSentinel: the sampling approach for PostgreSQL

Here is the first test I did with the beta of pgSentinel. This Active Session History sampling is a new approach to Postgres tuning. For people coming from Oracle, this is something that has made our life a lot easier to optimize database applications. Here is a quick example showing how it links together some information that are missing without this extension.

The installation of the extension is really easy (nore details on Daniel’s post):

cp pgsentinel.control /usr/pgsql-10/share/extension
cp pgsentinel--1.0.sql /usr/pgsql-10/share/extension
cp pgsentinel.so /usr/pgsql-10/lib

Cardinality Puzzle

One of the difficulties of being a DBA and being required to solve performance problems is that you probably never have enough time to think about how you got to a solution and why the solution works; and if you don’t learn about the process itself , you just don’t get better at it. That’s why I try (at least some of the time) to write articles and books (as I did with CBO Fundamentals) that