Search

Top 60 Oracle Blogs

Recent comments

12.1.0.2

12c Parallel Execution New Features: Concurrent UNION ALL - Part 1

12c introduces the concurrent UNION ALL operator that allows multiple branches below the UNION ALL to become active concurrently - which is a significant change. Before the introduction of this feature Oracle never executed multiple branches of an execution plan concurrently (in terms of Parallel Execution) - the parallelism so far was about executing the same operations of a particular branch of the execution plan by multiple processes / sessions.

12c Parallel Execution New Features: Hybrid Hash Distribution - Part 2

In the second part of this post (go to part 1) I want to focus on the hybrid distribution for skewed join expressions.

2. Hybrid Distribution For Skewed Join Expressions

The HYBRID HASH distribution allows to some degree addressing data distribution skew in case of HASH distributions, which I've described in detail already in the past.

12c Parallel Execution New Features: Hybrid Hash Distribution - Part 1

In this blog post I want to cover some aspects of the the new HYBRID HASH adaptive distribution method that I haven't covered yet in my other posts.As far as I know it serves two purposes for parallel HASH and MERGE JOINs, adaptive broadcast distribution and hybrid distribution for skewed join expressions. In the first part of this post I want to focus on former one (goto part 2).

1. Adaptive Broadcast Distribution For Small Left Row Sources

It allows the PX SEND / RECEIVE operation for the left (smaller estimated row source) of the hash join to decide dynamically at runtime, actually at each execution, if it should use either a BROADCAST or HASH distribution, and correspondingly for the other row source to use then either a ROUND-ROBIN or a HASH distribution, too.

Maintaining Tempfile in TEMP Tablespace of PDB$SEED in Oracle 12c (12.1.0.2)

During testing recovery procedures for one of the ongoing projects I wanted to test the "complete disaster" recovery scenario. In this scenario I had to recreate also all ASM disks and restore everything from backup.
Actually full backup with RMAN and subsequent restore of a pluggable 12c single-tenant database  was the solution. I will not talk about that as the main point of this post is quite different.

So the recovery was successful but after restoring  the CDB$ROOT and PDB database I found in the alert log the following message:

Errors in file /u01/app/oracle/diag/rdbms/mydb/mydb/trace/mydb_dbw0_28973.trc:
ORA-01157: cannot identify/lock data file 202 - see DBWR trace file

Using Database In-Memory Column Store with Complex Datatypes

From those who are interested, hereby my slide deck I used during UKOUG Tech14, regarding…

"SELECT * FROM TABLE" Runs Out Of TEMP Space

Now that I've shown in the previous post in general that sometimes Parallel Execution plans might end up with unnecessary BUFFER SORT operations, let's have a look what particular side effects are possible due to this.

What would you say if someone tells you that (s)he just did a simple, straightforward "SELECT * FROM TABLE" that took several minutes to execute without returning, only to then error out with "ORA-01652 unable to extend temp segment", and the TABLE in question is actually nothing but a simple, partitioned heap table, so no special tricks, no views, synonyms, VPD etc. involved, it's really just a plain simple table?

Unnecessary BUFFER SORT Operations - Parallel Concatenation Transformation

When using Parallel Execution, depending on the plan shape and the operations used, Oracle sometimes needs to turn non-blocking operations into blocking operations, which means in this case that the row source no longer passes its output data directly to the parent operation but buffers some data temporarily in PGA memory / TEMP. This is either accomplished via the special HASH JOIN BUFFERED operation, or simply by adding BUFFER SORT operations to the plan.The reason for such a behaviour in parallel plans is the limitation of Oracle Parallel Execution that allows only a single data redistribution to be active concurrently.

Heuristic TEMP Table Transformation

There are at least three different ways how the Oracle optimizer can come up with a so called TEMP table transformation, that is materializing an intermediate result set:- As part of a star transformation the repeated access to dimensions can be materialized- As part of evaluating GROUPING SETs intermediate result sets can be materialized- Common Subquery/Table Expressions (CTE, WITH clause)Probably the most common usage of the materialization is in conjunction with the WITH clause.This is nothing new but since I came across this issue several times recently, here's a short demonstration and a reminder that this so called "TEMP Table Transformation" - at least in the context of the WITH clause - isn't really cost-based, in contrast to most other optimizer transformations nowadays - although the unnest transformation of subqueries also has a "no-brainer" variant where costing isn't considered.The logic simp

The APPROX_COUNT_DISTINCT Function – A Test Case

The aim of this post is not to explain how the APPROX_COUNT_DISTINCT function works (you find basic information in the documentation and in this post written by Luca Canali), but to show you the results of a test case I run to assess how well it works.

Here’s what I did…

I created a table with several numerical columns (the name of the column shows how many distinct values it contains), loaded 100 million rows into it (the size of the segment is 12.7 GB), and gathered the object statistics.