Search

Top 60 Oracle Blogs

Recent comments

18c

Ignoring Hints

One of the small changes (and, potentially big but temporary, threats) in 18.3 is the status of the “ignore hints” parameter. It ceases to be a hidden (underscore) parameter so you can now officially set parameter optimizer_ignore_hints to true in the parameter file, or at the system level, or at the session level. The threat, of course, it that some of your code may use the hidden version of the parameter (perhaps in an SQL_Patch as an opt_param() option rather than in its hint form) which no longer works after the upgrade.

DBMS_JOB – the joy of transactions

This is a followup to yesterdays post on DBMS_JOB and is critical if you’re upgrading to 19c soon. Mike Dietrich wrote a nice piece last week on the “under the covers” migration of the now deprecated DBMS_JOB package to the new Scheduler architecture. You should check it out before reading on here.

Mike’s post concerned mainly what would happen during upgrade (spoiler: the DBMS_JOB jobs become scheduler jobs but you can maintain them using the old API without drama), but immediately Twitter was a buzz with a couple of concerns that I wanted to address:

1) What about new jobs submitted via the old API after the upgrade?

DBMS_JOB – watching for failures

I had a friend point this one out to me recently. They use DBMS_JOB to allow some “fire and forget” style functionality for user, and in their case, the jobs are “best efforts” in that if they fail, it is not a big deal.

So whilst this may sound counter-intuitive, but if you rely on jobs submitted via DBMS_JOB to fail, then please read on.

By default, if a job fails 16 times in a row, it will marked as broken by the the database. Here’s a simple of example that, where the anonymous block will obviously fail because we are dividing by zero each time. I’ll set the job to run every 5 seconds, so that within a couple of minutes we’ll have 16 failures. First I’ll run this on 11.2.0.4

Re-partitioning – 18

In yesterday’s note on the options for converting a range-partioned table into a composite range/list parititioned table I mentioned that you could do this online with a single command in 18c, so here’s some demonstration code to demonstrate that claim:

Indexing Null Values - Part 2

In the previous post I've demonstrated that Oracle has some problems to make efficient use of B*Tree indexes if an IS NULL condition is followed by IN / OR predicates also covered by the same index - the predicates following are not used to navigate the index structure efficiently but are applied as filters on all index entries identified by the IS NULL.

In this part I'll show what results I got when repeating the same exercise using Bitmap indexes - after all they include NULL values anyway, so no special tricks are required to use them for an IS NULL search. Let's start again with the same data set (actually not exactly the same but very similar) and an index on the single expression that gets searched for via IS NULL - results are again from 18.3.0:

Indexing Null Values - Part 1

Indexing null values in Oracle is something that has been written about a lot in the past already. Nowadays it should be common knowledge that Oracle B*Tree indexes don't index entries that are entirely null, but it's possible to include null values in B*Tree indexes when combining them with something guaranteed to be non-null, be it another column or simply a constant expression.

Jonathan Lewis not too long ago published a note that showed an oddity when dealing with IS NULL predicates that in the end turned out not to be a real threat and looked more like an oddity how Oracle displays the access and filter predicates when accessing an index and using IS NULL together with other predicates following after.

Compression Restrictions - Update: Wide Table Compression In 12.1 And Later

I do have a very old post that used to be rather popular here that listed various restrictions related to compression. One of the most obvious restrictions in older versions was that the basic / OLTP (Advanced Row) heap table compression based on symbol tables / de-duplication was limited to tables with 254 columns or less - or probably more general to rows with single row pieces.

This limitation was lifted with Oracle 12c which started to support this compression type with tables having more than 254 columns / multiple row pieces - and there is a new internal parameter called "_widetab_comp_enabled" that defaults to TRUE.

I/O Benchmark Minor Update

I've recently published a new version 1.03 of the I/O benchmark scripts on #333333;">my #336699;">github repository#333333;"> (ideally pick the #336699;">IO_BENCHMARK.ZIP containing all the scripts#333333; font-family: "verdana" , "arial" , sans-serif;">).

Bloom Filter Efficiency And Cardinality Estimates

I've recently came across an interesting observation I've not seen documented yet, so I'm publishing a simple example here to demonstrate the issue.

In principle it looks like that the efficiency of Bloom Filter operations are dependent on the cardinality estimates. This means that in particular cardinality under-estimates of the optimizer can make a dramatic difference how efficient a corresponding Bloom Filter operation based on such a cardinality estimate will work at runtime. Since Bloom Filters are crucial for efficient processing in particular when using Exadata or In Memory column store this can have significant impact on the performance of affected operations.

Chinar Aliyev's Blog

Chinar Aliyev has recently started to pick up on several of my blog posts regarding Parallel Execution and the corresponding new features introduced in Oracle 12c.

It is good to see that obviously Oracle has since then improved some of these and added new ones as well.

Here are some links to the corresponding posts:

New automatic Parallel Outer Join Null Handling in 18c

Improvements regarding automatic parallel distribution skew handling in 18c

Chinar has also put some more thoughts on the HASH JOIN BUFFERED operation: