Search

Top 60 Oracle Blogs

Recent comments

CBO

opt_estimate 5

If you’ve been wondering why I resurrected my drafts on the opt_estimate() hint, a few weeks ago I received an email containing an example of a query where a couple of opt_estimate() hints were simply not working. The critical features of the example was that the basic structure of the query was of a type that I had not previously examined. That’s actually a common type of problem when trying to investigate any Oracle feature from cold – you can spend days thinking about all the possible scenarios you should model then the first time you need to do apply your knowledge to a production system the requirement falls outside every model you’ve examined.

Before you go any further reading this note, though, I should warn you that it ends in frustration because I didn’t find a solution to the problem I wanted to fix – possibly because there just isn’t a solution, possibly because I didn’t look hard enough.

opt_estimate 4

In the previous article in this series on the opt_estimate() hint I mentioned the “query_block” option for the hint. If you can identify a specify query block that becomes an “outline_leaf” in an execution plan (perhaps because you’ve deliberately given an query block name to an inline subquery and applied the no_merge() hint to it) then you can use the opt_estimate() hint to tell the optimizer how many rows will be produced by that query block (each time it starts). The syntax of the hint is very simple:

opt_estimate 3

This is just a quick note to throw out a couple of of the lesser-known options for the opt_estimate() hint – and they may be variants that are likely to be most useful since they address a problem where the optimizer can produce consistently bad cardinality estimates. The first is the “group by” option – a hint that I once would have called a “strategic” hint but which more properly ought to be called a “query block” hint. Here’s the simplest possible example (tested under 12.2, 18.3 and 19.2):

opt_estimate 2

This is a note that was supposed to be a follow-up to an initial example of using the opt_estimate() hint to manipulate the optimizer’s statistical understanding of how much data it would access and (implicitly) how much difference that would make to the resource usage. Instead, two years later, here’s part two – on using opt_estimate() with nested loop joins. As usual I’ll start with a little data set:

Scalar Subquery Costing

A question came up on Oracle-l list-server a few days ago about how Oracle calculates costs for a scalar subquery in the select list. The question included an example to explain the point of the question. I’ve reproduced the test below, with the output from an 18.3 test system. The numbers don’t match the numbers produced in the original posting but they are consistent with the general appearance.

In-table predicates

This note was prompted by a recent email asking about the optimizer’s method for estimating the selectivity of a predicate which compared two columns in the same table – for example:  “where orders.amount_invoiced = orders.amount_paid”. It’s been about 14 years since I wrote “Cost Based Oracle – Fundamentals” so my memory of what I wrote (and whether I even mentioned this case) was rather hazy, so I sent off a quick reply and decided to do a little checking.

Unique Indexes Force Hints To Be “Ignored” Part II (One Of The Few)

In Part I, I showed a demo of how the introduction of a Unique Index appears to force a hint to be “ignored”. This is a classic case of what difference a Unique Index can make in the CBO deliberations. So what’s going on here? When I run the first, un-hinted query: we notice something a […]

Unique Indexes Force Hints To Be “Ignored” Part I (What’s Really Happening)

As I was compiling my new “Oracle Diagnostics and Performance Tuning” seminar, I realised there were quite a number of indexing performance issues I haven’t discussed here previously. The following is a classic example of what difference a Unique Index can have over a Non-Unique index, while also covering the classic myth that Oracle sometimes […]

Transitive Closure

This is a follow-up to a note I wrote nearly 12 years ago, looking at the problems of transitive closure (or absence thereof) from the opposite direction. Transitive closure gives the optimizer one way of generating new predicates from the predicates you supply in your where clause (or, in some cases, your constraints); but it’s a mechanism with some limitations. Consider the following pairs of predicates:

NULL predicate

People ask me from time to time if I’m going to write another book on the Cost Based Optimizer – and I think the answer has to be no because the product keeps growing so fast it’s not possible to keep up and because there are always more and more little details that might have been around for years and finally show up when someone asks me a question about some little oddity I’ve never noticed before.

The difficult with the “little oddities” is the amount of time you could spend trying to work out whether or not they matter and if it’s worth writing about them. Here’s a little example to show what I mean – first the data set: