Search

Top 60 Oracle Blogs

Recent comments

CBO

Cost is Time (again)

The hoary old question about lower cost queries running faster or slower that higher cost queries has appeared once again on the OTN database forum. It’s one I’ve addressed numerous times in the past – including on this blog – but the Internet being what it is the signal keeps getting swamped by the noise. This time around a couple of “new” thoughts crossed my mind when reading the question.

There is a Time column on the standard forms of the execution plan output, and the description of this column is available in the manuals and has been for years (here’s a definition from v$sql_plan from 10gR2, for example):

Long Parsing and PGA limits

Recently I’ve seen not so smart optimizer behavior: one query took long time to parse, and ended with an error hitting PGA_AGGREGATE_LIMIT in few minutes; another query was just parsed for ages while using reasonable (under 2G :)) amount of PGA and still could hit PGA_AGGREGATE_LIMIT but after way more time – up to an hour.


Both cases were similar and involved queries which were accessing views; and those views’ code is generated by an application using lots of IN LISTs and other OR conditions. They both are really ugly SQLs with text length ~100K. When Oracle tried to parse them it took a lot of time and parse attempt had either failed with ORA-4036 soon or hanged for a long time and then failed. Strangely incident trace file generated for ORA-4036 doesn’t include PGA heaps breakdown and you have to manually enable PGA heapdump on error to get an idea what is taking up memory. Here’s what I’ve found in there:

"Cost Based Optimizer: Grundlagen – mit Update für Oracle 12c" Artikel (German)

Seit gestern steht auf der "Informatik Aktuell"-Seite mein Artikel "Cost Based Optimizer: Grundlagen – mit Update für Oracle 12c" zur Verfügung.

Er stimmt auch inhaltlich auf meinen Vortrag bei den IT-Tagen 2016 am 13. Dezember ein.
Sollte Sie das Thema interessieren, lade ich Sie hiermit also herzlich zu meinem Vortrag ein, bei dem ich das Thema auch mit Live-Demonstrationen vertiefen werde.

Anniversary OICA

Happy anniversary to me!

On this day 10 years ago I published the first article in my blog. It was about the parameter optimizer_index_cost_adj (hence OICA), a parameter that has been a  source of many performance problems and baffled DBAs over the years and, if you read my first blog posting and follow the links, a parameter that should almost certainly be left untouched.

Parallel_index hint

Prompted by a recent OTN posting I’ve dug out from my library the following demonstration of an anomalty with the parallel_index() hint. This note is a warning about  how little we understand hints and what they’re supposed to mean, and how we can be caught out by an upgrade. We’ll start with a data set which, to match a comment made in the origina posting rather than being a necessity for the demonstration, has an index that I’ve manipulated to be larger than the underlying table:

Adaptive Cursor Sharing Fail

Here is another example (besides the fact that Adaptive Cursor Sharing only gets evaluated during a PARSE call (still valid in 12c) and supports a maximum of 14 bind variables) I've recently come across at a client site where the default implementation of Adaptive Cursor Sharing fails to create a more suitable execution plan for different bind variable values.Broken down to a bare minimum the query was sometimes executed using non-existing values for a particular bind variable, but other times these values were existing and very popular. There were two suitable candidate indexes and one of them appeared to the optimizer more attractive in case of the "non-existing" value case.

Month End

A question about parallel query and cardinality estimates appeared on OTN a little while ago that prompted me to write this note about helping the optimizer do the best job with the least effort.  (A critical point in the correct answer to the original question is that parallel query may lead to “unexpected” dynamic sampling, which can make a huge difference to the choice of execution plans, but that’s another matter.)

The initial cardinality error in the plan came from the following predicate on a “Date dimension” table:

Lost Concatenation

This note models one feature of a problem that came up at a client site recently from a system running 12.1.0.2 – a possible bug in the way the optimizer handles a multi-column in-list that can lead to extremely bad cardinality estimates.

The original query was a simple three table join which produced a bad plan with extremely bad cardinality estimates; there was, however, a type-mismatch in one of the predicates (of the form “varchar_col = numeric”), and when this design flaw was addressed the plan changed dramatically and produced good cardinality estimates. The analysis of the plan, 10053 trace, and 10046 trace files done in-house suggested that the problem might relate in some way to an error in the handling of SQL Plan Directives to estimate cardinalities.

Invisible Bug

At this Wednesday’s Oracle Midlands event someone asked me if Oracle would use the statistics on invisible indexes for the index sanity check. I answered that there had been a bug in the very early days of invisible indexes when the distinct_key statistic on the index could be used even though the index itself would not be considered as a candidate in the plan (and the invisible index is still used to avoid foreign key locking – even in 12c – it’s only supposed to be invisible to the optimizer).

Index Sanity

By popular demand (well, one person emailed me to ask for it) I’m going to publish the source code for a little demo I’ve been giving since the beginning of the millennium – it concerns indexes and the potential side effects that you can get when you drop an index that you’re “not using”. I think I’ve mentioned the effect several times in the history of this blog, but I can’t find an explicit piece of demo code, so here it is – starting at the conclusion – as a cut and paste from an SQL*Plus session running against an 11g instance: