Search

Top 60 Oracle Blogs

Recent comments

design

IOT Part 4 – Greatly Boosting Buffer Cache Efficiency

<..IOT1 – the basics
<….IOT2 – Examples and proofs
<……IOT3 – Significantly reducing IO
IOT5 – Primary Key issues..>

So far I have covered the basics of Index Organized Tables, created some examples and shown how IOTs can help reduce the cost of single row selects and then how they can greatly aid range scans. Follow the above links for details.

Now I’d like to show that the use of IOTs has the potential to make your block buffer cache (BBC) far more efficient. Going to disc is very,very slow compared to going to memory {NB solid state storage improves this situation but does not remove it}. The block buffer cache has always been critical to oracle SQL Select performance as it allows you to access data in memory rather than disc and in general the more block buffer cache you have the faster your system will be.
{I am of the opinion that the BBC is even more important now than ever. As hard discs get larger we are seeing fewer and fewer spindles per GB of storage and, in essence, disc storage is effectively getting slower – because more data is hosted on the same number of spindles and those spindles are not themselves getting faster – I digress, for more details see posts Big Discs are Bad and IOPs and Form Factors}

In the scenario I’ve covered in my previous posts on IOTs we have a system where child data is coming in for many parents every day for 100 days. With a heap table the data pours into the growing end of the table, usually a record or two per parent each day and no guarantee that if two records come in, they will be put into the same block.

So, when you select a child record for a parent you get the situation shown below:


For many systems, the Block Buffer Cache is holding a lot of data no queries asked for -collateral data

When oracle needs to collect a record from the table, it has to read the whole block. Oracle only reads in tablespace data in whole blocks. That record comes with many other records in it that you did not ask for or want. I refer to this as Collateral Data – innocent bystander data that has got pulled into the BBC just because it was in the same block as required data. The larger the block size, the more collateral data there is.

To get all the child records for the parent, you need to read all those individual table blocks holding one or two records of interest. For our 100 child records you will probably need to read in close to 100 table blocks. Your Block Buffer Cache is filling up with of blocks where only one row out of each block is “of interest”. If that is one row out of 80 in a block, you are effectively wasting 98.75% of the space that table takes up in the block buffer cache.

With an IOT the situation is very different. We have already seen in my previous post on reducing IO that for a range scan on the IOT, oracle does not need to go and collect records from blocks scattered throughout the table. It simply collects the IOT leaf blocks holding the relevant data. Not only does this require less IO, it also results in the fetched blocks mostly holding the required data. The percentage of collateral data is greatly reduced:


IOTs are a powerful tool in reducing collateral data and using the BBC more efficiently

Thus instead of 100 table blocks that mostly hold collateral data, you have 2 or 3 blocks holding mostly the data you are interested in. Your wastage, the collateral data, is about 33-50%. With my example tables from post IOT2, it is indeed an average of 2-3 IOT blocks holding all the data for a single parent and 100 heap table blocks holding the same data.

You can think of it another way.

With my IOT I use only 3% of the memory to cache a single set of records for a parent compared to that needed with a normal HEAP table.

Let’s extend that idea a little. Let’s say I have 100,000 customer and 5% of the customers are active.
Each customer has on average 500 * 200-byte activity records for 100K of data
Each 8K Heap Table block holds 40 records, a very inefficient IOT holds 20 records per block {I’ll go into the details of this in a later post, but I am being a little unfair on the IOT here}.
There is some grouping of records for the customer so that those 500 records are over 400 blocks.
The whole working set of 400 blocks * (100,000*0.05) customers *8K = 2,000,000K

Now replace the table with an IOT keyed on customer ID.
Those 400 records would be spread over (400/20)+2 blocks. The +2 is the start and end of the range.
That is 22 *(100,000*0.05) *8K = 110,000K

Both would also need the overhead of an index structure to be cached also, for the Heap table it is the Primary Key index, for the IOT it is the rest of the IOT structure.

So you would need 2GB or so of Block Buffer Cache dedicated to caching the working set held as a heap table and 110MB of Block Buffer Cache dedicated to caching the IOT equivalent.

How many of you spotted that the space needed to “cache the heap table working set” is actually twice the size of the table? Well, that is because with a 5% working set and 40 records per block, there is a fair chance that some of those Collateral Data records in each block are for the 5% working set. Over all, almost every block will hold data for two or three active users. This is one of the complications of working out how efficient you block buffer cache is likely to be and I’ll have to leave that to another post. In reality you would need to hold 99% of the heap table in memory to cache the whole working set, so still 1GB. The IOT is still far more efficient.

I’ll just finish by saying that on one project I worked on we would have needed several hundred GB of Block Buffer Cache to hold the working set of the main tables if held as heap tables. That volume of memory was simply not available. With IOTs this reduced to about 40GB. This was available. The majority of this working set was able to stay in their SGA and it meant that so long as the instance stayed up, that working set of data mostly stayed in cache. I was able to see on the live system that processing of the data for these active customers was mostly being supported by consistent gets and less than 1% disk reads.

So, by using IOTS I reduced consistent gets dramatically, made more efficient use of the block buffer cache and, as a result of that, reduced the number of physical reads needed to support the consistent gets.

IOT part 3 – Significantly Reducing IO

<..IOT1 – the basics
<….IOT2 – Examples and proofs
IOT4 – Boosting Buffer Cache Efficiency..>
IOT5 – Primary Key issues….>

In the previous two posts I covered the basics of Index Organized Tables (IOTs) and then created some test tables to demonstrate the benefit of IOTs that is most often covered – reducing the IO needed to get a single record by one IO, say from 5 to 4. {Whether this is a buffer get from memory or a disc IO depends on if the block is cached, of course}.

In this post I am going to show how IOTs can far more significantly reduce the IO when several related rows are required.

Below is one of my test tables, the one that is a normal heap table and has a primary key, CHHE_PK on PARE_ID and CRE_DATE:

mdw11> desc child_heap
 Name                                      Null?    Type
 ----------------------------------------- -------- --------------
 PARE_ID                                   NOT NULL NUMBER(10)
 CRE_DATE                                  NOT NULL DATE
 VC_1                                      NOT NULL VARCHAR2(100)
 DATE_1                                             DATE
 NUM_1                                              NUMBER(2)
 NUM_2                                              NUMBER(2)

--
mdw11> select count(*),count(distinct(pare_id)) from child_heap

  COUNT(*) COUNT(DISTINCT(PARE_ID))
---------- ------------------------
   1000000                     9999

As you can see, the table has 1 million records and 9,999 values for PARE_ID, there are approx 100 records per parent. The data was created to match a common situation – that of a bit of data coming in for each parent every day. See post 2 for details.

The result of this is that the data for any given parent is scattered through the table. As the data comes in for a given day, the data for the first parent is added to the end of the table, followed by all the data for all the other parents who have data that day. The next day this is repeated, so the child records for a given parent are interspersed with the child records for many other parents.

The below diagram demonstrate what will now happen if you issue a statement like
select *
from CHILD_HEAP
where PARE_ID=12

Oracle quickly works down the index to the leaf block containing the first key that matches the range. This takes, in my example, 4 block reads. Oracle now works through the index entries and, via the rowid, identifies the exact block to visit in the table for each key. For each key it has to visit a new block – because the data is scattered through the table. This is what the clustering_factor in the index statistics is measuring, how often contiguous rows in the index are for the same block. In our case, almost never.
In my diagram I do not number those table reads but in my simplistic diagram it would be 10 further reads.
If Oracle reaches the end of the leaf block before it reaches the end of the range of key values, oracle follows the pointer in the leaf block (not shown) to the next leaf block (whcih is another block read) and continues working through the keys until the range scan is completed.

In my simplified diagram I only have 6 entries per leaf block. In reality, and in my example tables, this is more like a few hundred. 247 in the case of CHHE_PK.

Now let’s consider my Index Organized Table, CHILD_IOT. It has exactly the same columns as CHILD_HEAP and the data was created in the same way. However, because it is an IOT, as the data came in it was inserted into the primary key index and is thus in an ordered state.

The below diagram demonstrate what will now happen if you issue a statement like
select *
from CHILD_IOT
where PARE_ID=12

Oracle works down the index to the leaf block where the range scan begins and now simply works along the leaf blocks. There is no need to go and visit the table as there is no table.

In my IOT diagram the leaf entries are longer and there are fewer in each leaf block, ie 5. So my scan has to visit 3 leaf blocks rather than 2. In reality the difference is more pronounced, in my example table there are actually 56 rows per leaf block, compared to the 247 in the index on the heap table. As such, my scan on the IOT will cover more leaf blocks but this is insignificant compared to the reduction in block visits caused by not having to go hunt down records scattered over the table. Even in the unlikely event of my IOT being deeper by 1 level (an extra layer of branch blocks) due to the reduces entries per leaf block, I would still be winning for range scans.

That is all nice theory and pictures. As ever, we need to back this up with some real tests. Firstly, I am using SQL*Plus and I need to set my arraysize large enough so that I do not introduce extra consistent gets through selecting small sets of rows between client and server. You will need to do the same to see similar results to me.
{I keep meaning to do a dedicated post on arraysize but H.Tonguç YIlmaz has a nice post already on it.}

set arraysize 200
set autotrace on

Now I will select all the records for PARE_ID=10, including a column not in the Primary Key, so that the table needs to be visited. I did this twice to remove the parsing overhead:

select pare_id,cre_date,vc_1
from child_heap
where pare_id =10
order by cre_date

   PARE_ID CRE_DATE  VC_1
---------- --------- -----------------------------------------------------------------------
        10 17-APR-11 LDOBKMLCYCSQYBDFIUISJWQAHNYSQOSUQJKIGCSEJHDPOFFLHHXYSMDSQNUB
        10 18-APR-11 LBGDNOYQFQMTMJQRAUWSRNBTHQSKBEUVLZSFWEGULOPDXQSVXOIC
        10 18-APR-11 LBGDNOYQFQMTMJQRAUWSRNBTHQSKBEUVLZSFWEGULOPDXQSVXOICOSFTSYNO
        10 19-APR-11 IBVTIGYBXJLMZQKRPJZEPXLMQLNOYNWLQOYVVGARNSITZWULVBYLEJKZNII
        10 19-APR-11 IBVTIGYBXJLMZQKRPJZEPXLMQLNOYNWLQOYVVGARNSITZWULVBYLEJ
        10 19-APR-11 IBVTIGYBXJLMZQKRPJZEPXLMQLNOYNWLQOYVVGARNSITZWULVBYLEJ
        10 20-APR-11 USIGVSPPIUUXEIRBMPFNBTTMDUJTVITHKQWZAKZOMJEDZCUPQAEFQQEYM
        10 20-APR-11 USIGVSPPIUUXEIRBMPFNBTTMDUJTVITHKQWZAKZOMJEDZCUPQAEF
...
        10 19-JUL-11 BNOYCIDTFJHPPOYPSVAVKJSYUNVPGPHLJXUOIKYKASKHYGZNVHVFFGPVAKN
        10 25-JUL-11 HDFGAQWTYZBSVYVXTFFRDIAKRYWFUPFCNDCETHUWHSQUITHHVUEJTJ

82 rows selected.

Execution Plan
------------------------------------------------------------------------------------------
| Id  | Operation                   | Name       | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |            |   100 |  6900 |   103   (0)| 00:00:02 |
|   1 |  TABLE ACCESS BY INDEX ROWID| CHILD_HEAP |   100 |  6900 |   103   (0)| 00:00:02 |
|*  2 |   INDEX RANGE SCAN          | CHHE_PK    |   100 |       |     3   (0)| 00:00:01 |
------------------------------------------------------------------------------------------

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
         86  consistent gets
          0  physical reads

82 rows collected and 86 consistent gets. That will be 4 consistent gets to process the index blocks and 82 for the table blocks.

Now let’s repeat that on the IOT:

select pare_id,cre_date,vc_1
from child_IOT
where pare_id =10
order by cre_date
mdw11> /
any key>

   PARE_ID CRE_DATE  VC_1
---------- --------- ------------------------------------------------------------
        10 17-APR-11 QJHQXTQAYEUICPNDQTYMMFZPWJSIDLBKOXYTHLEHKTVWUPKQMWUUX
        10 18-APR-11 BUTUEWDCDQVPLTPPRFGBBEDOZYRPERPRROVUQPTSRZLHKVBSBUEAMZYAS
        10 18-APR-11 BUTUEWDCDQVPLTPPRFGBBEDOZYRPERPRROVUQPTSRZLHKVBSBUEAMZY
        10 19-APR-11 DEGNPALVLMIDYCYIQIIQJJVZFTNIMEULMAGDEWVTOAKBNHOPUQJE
        10 19-APR-11 DEGNPALVLMIDYCYIQIIQJJVZFTNIMEULMAGDEWVTOAKBNHOPUQJ
...
        10 24-JUL-11 TJGLOEITTVXQTQPHSKGVERSGJDREYSKKCDUFMQXQVXMHMMDWPLJNSNK
        10 24-JUL-11 TJGLOEITTVXQTQPHSKGVERSGJDREYSKKCDUFMQXQVXMHMMDWPLJNSNKCN
        10 25-JUL-11 BCLLVPYMWAAQOVLILXARQZXEGAQAARPURIFKFKHROUSFORRYYXQZUAJHDBL

108 rows selected.

Execution Plan
----------------------------------------------------------------------------
| Id  | Operation        | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------
|   0 | SELECT STATEMENT |         |   100 |  6900 |     4   (0)| 00:00:01 |
|*  1 |  INDEX RANGE SCAN| CHIO_PK |   100 |  6900 |     4   (0)| 00:00:01 |
----------------------------------------------------------------------------

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
          6  consistent gets
          0  physical reads

We actually gathered more data, 108 rows compared to 82, all for 6 consistent gets compared to 86 consistent gets. That is a reduction to less than 10% of the original effort.

Now for a more extreme test. I am going to select a single row summary of data for 10 parents, flushing the cache between each run to show the impact when you have to do real IO to support those consistent gets. This is on a fairly old {4 years} laptop with a rather tired hard disc

alter system flush buffer_cache

System altered.

Elapsed: 00:00:00.18

--
--

select count(*),sum (num_1)
from child_heap
where pare_id between 50 and 60

  COUNT(*) SUM(NUM_1)
---------- ----------
      1155      12031

Elapsed: 00:00:06.39

Execution Plan
-------------------------------------------------------------------------------------------
| Id  | Operation                    | Name       | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |            |     1 |     7 |  1203   (0)| 00:00:18 |
|   1 |  SORT AGGREGATE              |            |     1 |     7 |            |          |
|   2 |   TABLE ACCESS BY INDEX ROWID| CHILD_HEAP |  1200 |  8400 |  1203   (0)| 00:00:18 |
|*  3 |    INDEX RANGE SCAN          | CHHE_PK    |  1200 |       |     7   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
       1157  consistent gets
       1112  physical reads

--
--

alter system flush buffer_cache

System altered.

Elapsed: 00:00:00.18

--
--

select count(*),sum (num_1)
from child_iot
where pare_id between 50 and 60

  COUNT(*) SUM(NUM_1)
---------- ----------
      1111      11528

Elapsed: 00:00:00.29

Execution Plan
-----------------------------------------------------------------------------
| Id  | Operation         | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |         |     1 |     7 |    24   (0)| 00:00:01 |
|   1 |  SORT AGGREGATE   |         |     1 |     7 |            |          |
|*  2 |   INDEX RANGE SCAN| CHIO_PK |  1200 |  8400 |    24   (0)| 00:00:01 |
-----------------------------------------------------------------------------

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
         25  consistent gets
         25  physical reads

The Heap took 6.39 seconds and required 1112 physical reads to support 1157 consistent gets.
The IOT took 0.29 seconds and required 25 physical reads to support 25 consistent gets.

I think we can all see that IOTs have the potential to greatly reduce physical and logical IO. Perhaps we should all be using IOTs more.

Final point. The Heap version took less physical reads than consistent gets as some blocks read into the block buffer cache held data required later in the query.

The impact of IOTs on the buffer cache will be the topic of my next post on IOTs. I think { hope:-) } that many of you will be very interested and impressed by what you could gain…

IOT 2 – First examples and proofs

<.. IOT1 – Basics
IOT3 – Great reductions in IO for IOTs..>
IOT4 – Boosting Buffer Cache Efficiency….>
IOT5 – Primary Key issues……>

In my first post on IOTs I ran through the basics of what they are. Here I am going to create some test tables and show you a few things.

I am going to create a simple PARENT table with 9,999 records and then two CHILD tables. CHILD_HEAP, a normal table, and CHILD_IOT, an Index Organized Table. They have the same columns and will hold very similar data.

All of this is on Oracle 11.1 but is exactly the same on 10.2. 8K block size, tablespaces are auto segment space managed.

Here are the creation statements:

--first create the parent table, keyed by ID.
-- The other columns are not significant, they just represent "information"
create table mdw.parent
(id       number(10)    not null
,name     varchar2(100) not null
,date_1   date          not null
,num_1    number(2)
,num_2    number(2)
,constraint pare_pk primary key(id)
 using index tablespace index_01
)
tablespace data_01
/
--
--Now put my 9999 parents into the table.
insert into parent
select rownum
,dbms_random.string('U',mod(rownum,10)+50)
,sysdate-(mod(rownum,500)+1000)
,mod(rownum,99)+1
,trunc(dbms_random.value(0,100))
from dual connect by level < 10000
/
--
-- create the table to hold the children as a heap table
create table child_heap
(pare_id   number(10)    not null
,cre_date  date          not null
,vc_1      varchar2(100) not null
,date_1    date
,num_1     number(2)
,num_2     number(2)
,constraint chhe_pk primary key(pare_id,cre_date)
 using index tablespace index_01
)
tablespace data_01
/
--
-- create the table to hold the children as an IOT table
create table child_iot
(pare_id   number(10)    not null
,cre_date  date          not null
,vc_1      varchar2(100) not null
,date_1    date
,num_1     number(2)
,num_2     number(2)
,constraint chio_pk primary key(pare_id,cre_date)
-- using index tablespace index_01 -- CANNOT STATE for IOT. State in table definition
)
ORGANIZATION INDEX -- This is it. This makes the table an IOT
tablespace data_01
/

There are only two differences between the statements creating the CHILD_HEAP and the CHILD_IOT tables.

The main one is the inclusion of the line ORGANIZATION INDEX and is what instructs Oracle to create the table as an IOT. Note that it does not state the index and you cannot state the index. The IOT is created based on the Primary Key.
The other change is that you now cannot state the tablespace for the Primary Key index. I’ve not played with this at all but I don’t think you can state anything with the “using index” as the table storage clauses are used for the Primary Key index. I personally find this a little illogical as it is the index segment that is created, but I guess others would find it more natural that you still state this at the table level.

When I create IOTs on a real system, I put the IOT in a table tablespace {I still maintain table and index tablespaces, for reasons I won’t go into here}. I put it there as it holds the actual data. If I lose that Primary Key index I am losing real data, not duplicated data.

I then populated the two CHILD tables with data. The method of creating this test data is very important.

I am simulating a very common situation, where data is coming in for a set of Parents (think customers, accounts, scientific instruments, financial entities) and the data is coming in as a record or set of records each day. ie not where the parent and all of it’s child records are created at one time, like an order and it’s order lines. I am simulating where the child data is created a few records at a time, not all in one go.

The code is simple. it loops for one hundred days and for each day it creates 10,000 records for random parents. On each day any given parent will have none, one or several records. On average, each parent will end up with 100 records, but some will have more and some less. The key thing is that the data for any given parent is created a record at a time, with lots of records created for other parents before the next record for that given parent.

The two tables will have the same pattern of data but not identical data. {I could have seeded the random number generator to make the two data sets the same but this will do}. Below is the statement for one table, you just change the table name to populate each table. {BTW I like using the from dual connect by level <=x method of getting the number of rows desired – it is fast and is neat, once you have seen it once}.

declare
v_num number :=10000; -- number of people
v_str varchar2(60);
begin
dbms_output.put_line (to_char(SYSTIMESTAMP,'HH24:MI:SS.FF'));
for i in 1..100 loop --days to do
  v_str:=dbms_random.string('U',60);
  insert into CHILD_HEAP
    (pare_id,cre_date,vc_1,date_1,num_1,num_2)
  select
    trunc(dbms_random.value(1,v_num))
   ,sysdate-(100-i) + (rownum/(60*60*24) )
   ,substr(v_str,1,51+mod(rownum,10))
   ,sysdate-(100-i) + ((mod(rownum,30)+1)/3)
   ,mod(rownum,20)+1
   ,mod(rownum,99)+1
  from dual connect by level <=v_num;
end loop;
dbms_output.put_line (to_char(SYSTIMESTAMP,'HH24:MI:SS.FF'));
end;
/

I then gathered objects stats on the tables.
Let’s check the size of the tables:

select segment_name, segment_type,tablespace_name,blocks
from dba_segments where owner=USER and segment_name like 'CHILD%';

SEGMENT_NAME    SEGMENT_TYPE    TABLESPACE_NAME     BLOCKS
--------------- --------------- --------------- ----------
CHILD_HEAP      TABLE           DATA_01              12288

1 row selected.

ONE row? Where is the other table, where is CHILD_IOT? It does not exists.

Remember from my first post that I made the comment I would have prefered it if Index Organized Tables had been called something like ‘Table Containing Indexes’? The table data has been placed in the Primary Key index and the table segment does not even exist. If you start using IOTs this will catch you out periodically – it does me anyway and I’ve been using them on and off for years :-) .

Let’s look at the size of the primary key indexes:

select segment_name, segment_type,tablespace_name,blocks
from dba_segments where owner=USER and segment_name like 'CH%PK'
and segment_name not like '%ORD%'

SEGMENT_NAME    SEGMENT_TYPE    TABLESPACE_NAME     BLOCKS
--------------- --------------- --------------- ----------
CHHE_PK         INDEX           INDEX_01              4224
CHIO_PK         INDEX           DATA_01              19456

2 rows selected.

Note that the Primary Key index for CHILD_HEAP, CHHE_PK, is there and is 4,224 blocks in size, and the CHILD_IOT Primary Key, CHIO_PK, is a lot larger at 19,456 blocks. In fact, not only is the CHIO_PK index larger than the CHILD_HEAP table, it is larger than the combined size of the CHILD_HEAP table and CHHE_PK index combines. So much for me saying last post that IOTs can save disk space? I’ll come back to that in a later post…

Here are some other stats from one of my scripts:

mdw11> @tab_sci_own
owner for Table: mdw
Name for Table: child_heap

OWNER    TABLE_NAME          NUM_ROWS      BLOCKS AVG_L GLS ULS LST_ANL      PRT  SAMP_SIZE
-------- -------------- ------------- ----------- ----- --- --- ------------ --- ----------
MDW      CHILD_HEAP          1000,000      12,137    83 YES NO  250711 22:01 NO     1000000

INDEX_NAME      TYP PRT UNQ BL     L_BLKS   DIST_KEYS       CLUSTF     LB_KEY     DB_KEY LST_ANL
--------------- --- --- --- -- ---------- ----------- ------------ ---------- ---------- ------------
CHHE_PK         NOR NO  UNI  2      4,034    1000,000      995,857          1          1 250711 22:02

INDEX_NAME                   TABLE_NAME       PSN COL_NAME
---------------------------- ---------------- --- ------------------------------------------------
CHHE_PK                      CHILD_HEAP       1   PARE_ID
CHHE_PK                      CHILD_HEAP       2   CRE_DATE

--
--
owner for Table: mdw
Name for Table: child_iot

OWNER    TABLE_NAME          NUM_ROWS      BLOCKS AVG_L GLS ULS LST_ANL      PRT  SAMP_SIZE
-------- -------------- ------------- ----------- ----- --- --- ------------ --- ----------
MDW      CHILD_IOT           1000,000                83 YES NO  250711 22:03 NO     1000000

INDEX_NAME      TYP PRT UNQ BL     L_BLKS   DIST_KEYS       CLUSTF     LB_KEY     DB_KEY LST_ANL
--------------- --- --- --- -- ---------- ----------- ------------ ---------- ---------- ------------
CHIO_PK         IOT NO  UNI  2     17,855     910,881            0          1          1 250711 22:03

INDEX_NAME                   TABLE_NAME       PSN COL_NAME
---------------------------- ---------------- --- ------------------------------------------------
CHIO_PK                      CHILD_IOT        1   PARE_ID
CHIO_PK                      CHILD_IOT        2   CRE_DATE

Note the lack of BLOCKS for the CHILD_IOT table and the CLUSTERING_FACTOR of 0 for the CHIO_PK.

The clustering factor is the number of times Oracle, when scanning the whole index in order, would have to swap to a different Table block to look up the table record for each index entry. If it is close to the number of blocks in the table, then the clustering factor is low and the order of records in the table matches the order of entries in the index. This would make index range scans that need to visit the table reasonably efficient.

If the clustering factor is close to the number of records in the table then it means there is no correlation between index order and table row order and such index ranges scans that have to visit the table would be inefficient. Again, this is significant and will be the major topic of the next post.

The depth of the index does not change, being 3 in each case (BL or blevel 2)

So, can we see evidence of the theoretical efficiency of looking up single records via the IOT that I mentioned in the fist post? Here we go {oh, usual disclaimer, I run the code twice and show the second run, to remove the parsing overhead}:

-- First the Heap table
select * from child_HEAP where PARE_ID=1234
AND cre_date=to_date('24-JUN-11 20:13:21','DD-MON-YY HH24:MI:SS')

   PARE_ID CRE_DATE  VC_1
---------- --------- ------------------------------------------------------
DATE_1         NUM_1      NUM_2
--------- ---------- ----------
      1234 24-JUN-11  LUTFHOCIJNYREYICQNORREAJOVBRIHFVLXNIGIVZDMFJCTGYFWC
25-JUN-11         11         16
1 row selected.

Execution Plan
------------------------------------------------------------------------------------------
| Id  | Operation                   | Name       | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |            |     1 |    83 |     3   (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID| CHILD_HEAP |     1 |    83 |     3   (0)| 00:00:01 |
|*  2 |   INDEX UNIQUE SCAN         | CHHE_PK    |     1 |       |     2   (0)| 00:00:01 |
------------------------------------------------------------------------------------------

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
          4  consistent gets

--and now the IOT table

select * from child_IOT where PARE_ID=1234
AND cre_date=to_date('24-JUN-11 21:23:41','DD-MON-YY HH24:MI:SS')

   PARE_ID CRE_DATE  VC_1
---------- --------- -------------------------------------------------------
DATE_1         NUM_1      NUM_2
--------- ---------- ----------
      1234 24-JUN-11
CSIGBHSXWNDDTCFRCNWYPRNLEQWPCRYTXQQZHACDEXHOBEYXLNYBHRUHJ
27-JUN-11          7         52
1 row selected.

Execution Plan
-----------------------------------------------------------------------------
| Id  | Operation         | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |         |     1 |    83 |     2   (0)| 00:00:01 |
|*  1 |  INDEX UNIQUE SCAN| CHIO_PK |     1 |    83 |     2   (0)| 00:00:01 |
-----------------------------------------------------------------------------

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
          3  consistent gets

{I had to look up the exact values of CRE_DATE of a couple of records to do the above queries}

To look up a single row with the heap table you can see that the explain plan was to carry out a unique scan on the primary key and then look up the row via the rowid and took 4 consistent gets. 3 to walk down the index and get the rowid, one to look up the row block.

For the IOT table the explain plan reveals that there was simply an index unique scan of the Primary Key, nothing more. All data for the row was there in the index entry rather than the rowid. Thus only 3 consistent gets were required.

For single row lookups on the Primary Key, IOTS are more efficient than traditional Heap tables with a Primary Key index. {Please, no one point out that if all the columns you need are in the index you also do not need to go to the table, that is a different topic}.

Quite a few people have shown this efficiency before but the next step is far, far more interesting and shows a much more significant impact of IOTs. That is the topic of the next post :-) .

For now, I am going to finish off with what happens with range scans as I suggested they could slow down with an IOT.
Below, I select count(*) for just one of the parent values.

select count(*) from child_heap where pare_id = 2

  COUNT(*)
----------
        98

Execution Plan
-----------------------------------------------------------------------------
| Id  | Operation         | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |         |     1 |     4 |     3   (0)| 00:00:01 |
|   1 |  SORT AGGREGATE   |         |     1 |     4 |            |          |
|*  2 |   INDEX RANGE SCAN| CHHE_PK |   100 |   400 |     3   (0)| 00:00:01 |
-----------------------------------------------------------------------------

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
          3  consistent gets

--
--

select count(*) from child_iot where pare_id = 2

  COUNT(*)
----------
        93

Execution Plan
-----------------------------------------------------------------------------
| Id  | Operation         | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |         |     1 |     4 |     4   (0)| 00:00:01 |
|   1 |  SORT AGGREGATE   |         |     1 |     4 |            |          |
|*  2 |   INDEX RANGE SCAN| CHIO_PK |   100 |   400 |     4   (0)| 00:00:01 |
-----------------------------------------------------------------------------

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
          4  consistent gets

Both statements carry out a range scan on the Primary Key of the table. For the normal HEAP table this takes 3 consistent gets, which is no suprise as we have an 8k block size and only 100 rows for a given parent, they happen to fit into one block of the index. So Oracle works down the depth of the index and looks at one block.

For the IOT the scan works down the index but has to scan three blocks. Even though there are fewer entries, 93 compared to 98, they span three blocks and thus the total number of consistent gets is 5.

Admittedly I was a little lucky in my example above. Sometimes the entries for one parent will scan 2 blocks for the heap table’s Primary Key and occasionally the entries for the IOT will fit into 2 blocks. But if you look at the number of leaf blocks in the earlier stats (4,034 for the normal and 17,855 for the IOT, both for 10,000 entries) usually the 100 or so entries for single parent in the normal index will all fall into one block and the entries for the IOT will fall into between 2 and 3 blocks.

A select count(*) will full scan the smallest segment that can satisfy the query. Let’s try it:

mdw11> select count(*) from child_heap

  COUNT(*)
----------
   1000000

Execution Plan
-------------------------------------------------------------------------
| Id  | Operation             | Name    | Rows  | Cost (%CPU)| Time     |
-------------------------------------------------------------------------
|   0 | SELECT STATEMENT      |         |     1 |   989   (1)| 00:00:15 |
|   1 |  SORT AGGREGATE       |         |     1 |            |          |
|   2 |   INDEX FAST FULL SCAN| CHHE_PK |  1000K|   989   (1)| 00:00:15 |
-------------------------------------------------------------------------

Statistics
----------------------------------------------------------
          1  recursive calls
          2  db block gets
       4109  consistent gets
       4088  physical reads

mdw11> select count(*) from child_iot

  COUNT(*)
----------
   1000000

Execution Plan
-------------------------------------------------------------------------
| Id  | Operation             | Name    | Rows  | Cost (%CPU)| Time     |
-------------------------------------------------------------------------
|   0 | SELECT STATEMENT      |         |     1 |  4359   (1)| 00:01:05 |
|   1 |  SORT AGGREGATE       |         |     1 |            |          |
|   2 |   INDEX FAST FULL SCAN| CHIO_PK |  1000K|  4359   (1)| 00:01:05 |
-------------------------------------------------------------------------

Statistics
----------------------------------------------------------
          1  recursive calls
          0  db block gets
      19298  consistent gets
      19246  physical reads

The number of consistent gets (and physical reads) are close to the number of leaf blocks in the two segments, though higher. This is because Oracle is scanning the whole index, leaf blocks and branch blocks. The scan is far more expensive for the IOT, simply as the index is so much larger. I’ve not shown timings but on my little laptop, the count(*) takes about 3 seconds on CHILD_HEAP and about 5 seconds on the CHILD_IOT.

That is enough for one post.


A: The most fundamental difference between hash and nested loop joins

Ok guys, thanks for waiting!

I ended up expanding the article quite a lot compared to what I had originally planned. In fact I only wrote 50% of what I plan to write, I’ll update the rest… um… later… Instead of just stating the difference between the joins I took a step back and elaborated something what I often see people doing (and talking about in newsgroups and lists too).

Basically the most fundamental (or biggest or most important) difference between nested loop and hash joins is that:

  • Hash joins can not look up rows from the inner (probed) row source based on values retrieved from the outer (driving) row source, nested loops can.

In other words, when joining table A and B (A is driving table, B is the probed table), then a nested loop join can take 1st row from A and perform a lookup to B using that value (of the column(s) you join by). Then nested loop takes the next row from A and performs another lookup to table B using the new value. And so on and so on and so on.

This opens up additional access paths to the table B, for example when joining ORDERS and ORDER_ITEMS by ORDER_ID (and ORDER_ID is leading column of PK in ORDER_ITEMS table), then for whatever orders are taken from ORDERS table, we can perform a focused, narrow index range scan on ORDER_ITEMS for every ORDER_ID retrieved from the driving ORDERS table. A hash join can’t do that.

Of course this doesn’t mean that hash joins can’t use any indexes for tables they read – index range scans and unique lookups can still be used under a hash join, but only if there are constant values in the query text (in form of literal or bind variables). If there are no such constant (filter) conditions under a hash join, then the other options to use that index would be to do an INDEX FULL SCAN (which is a range scan from end to end of the index) or INDEX FAST FULL SCAN (which is like a full table scan through the entire index segment). However none of these opportunities give the same benefits as nested loops looking up rows from row source B dynamically based on what was retrieved from A during runtime.

Note that this nested loops benefit isn’t limited to indexes only on table B, the difference is more fundamental than just a specific access path. For example, if table B happens to be a single table hash cluster or indexed X$ table, then the nested loop is also able to do “optimized” lookups from these row-sources, based on the values retrieved from table A.

So, my article with a lot of (loosely) related details is here:

In the comments section of my question, Tom, Bernard Polarski, Christian Antognini and Marc Musette got the closest to what I had in my mind when I asked the question. However, of course your mileage may vary somewhat depending on what kind of problems you have experienced the most over all the years. Also, Jonathan Lewis had a valid comment regarding that the answer depends on what exactly does one mean by “fundamental” and yeah this was open to interpretation.

Nevertheless, I wanted to emphasize that there’s a more important difference between NL and hash joins, than the usual stuff you see in training material which talk about implementation details like hash tables and memory allocation…

Some day I will complete that article, I plan to add some design advice in there, like denormalization opportunities for getting the best of the both worlds etc. But now I’m gonna get a beer instead.

Thanks for reading and answering my blog, I was quite impressed by the volume of comments & answers to my question. I must do this more often!

Share

it didn't work ...

I did manage to publish a link to this blog post, 'Releasing early is not always good? Heresy!' at about 3:00 am on Jan 1st. The plan was that I'd close out 2009 by getting the last few posts related to Agile design off of my mind so I could start 2010 ready to return my focus to measurement. Fail.I woke up late that morning, drank my coffee and thought about problems in the design and

user centered design

It's the day before the new year and I have two topics related to development that I am hoping to complete today to wrap up 2009. Then I plan to refocus this blog on its originally intended topic - measurement. I can't promise not to wander off topic again but I will do my best.A few weeks ago, Cary Millsap sent me a link to The Fable of the User-Centered Designer. It's short and an enjoyable

a long overdue thank you

The past year has been well, many words come to mind but let's go with challenging. It's also been interesting, frustrating, enlightening, exhausting, but right about now, it feels like it was a very, very good year. Those of you that have read through the previous posts will remember that, right around the time I left for the Miracle Oracle Open World conference in October of 2008, I was

MOS, Flash, benefit enrollment and purple crayons ...

Nuno's post today coincided with an email I received from Oracle Support, expressing a sentiment similar to that in the email Nuno received from KEH. I won't attempt to post the entire email from Oracle Support, as it's full of pictures and links, but here's the 'thank you for your patience' section:Thank you for your patience during this transition period. We recognize that some customers

on the importance of a good data model ...

An article written by Bert Scalzo was published in Information Management this week. The topic is 'Is Data Modeling Still Relavant?': it's short, to the point and well worth reading.The article doesn't recommend a specific tool, it simply recommends the practice of capturing a model of the data at rest (old school approach) in addition to the newer techniques that focus on capturing the data in