Search

Top 60 Oracle Blogs

Recent comments

intel pin

A look into Oracle redo, part 3: log writer work cycle overview

This is the third part of a series of blogposts on how the Oracle database handles redo. The previous part talked about the memory area that stores redo strand information: https://fritshoogland.wordpress.com/2018/02/05/a-look-into-oracle-redo-part-2-the-discovery-of-the-kcrfa-structure/.

The single most important process in the Oracle database for handling redo is the log writer, which primary task is flushing the redo information other Oracle database processes put in the public redo strands to disk. Now that we have investigated the public redo strands and concurrency (first part) and kcrfsg_ and the KCRFA structure (second part), it seems logical to me to look at the log writer.

A look into Oracle redo, part 2: the discovery of the KCRFA structure

This is the second post in a series of blogposts on Oracle database redo internals. If you landed on this blogpost without having read the first blogpost, here is a link to the first blogpost: https://fritshoogland.wordpress.com/2018/01/29/a-look-into-oracle-redo-part-1-redo-allocation-latches/ The first blogpost contains all the versions used and a synopsis on what the purpose of this series of blogposts is.

In the first part, I showed how the principal access to the public redo strands is controlled by redo allocation latches, and showed a snippet of trace information of memory accesses of a foreground session when using the first public redo strand:

A look into Oracle redo, part 1: redo allocation latches

This will be a series of posts about Oracle database redo handling. The database in use is Oracle version 12.2.0.1, with PSU 170814 applied. The operating system version is Oracle Linux Server release 7.4. In order to look into the internals of the Oracle database, I use multiple tools; very simple ones like the X$ views and oradebug, but also advanced ones, quite specifically the intel PIN tools (https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool). One of these tools is ‘debugtrace’, which contains pretty usable output on itself (a indented list of function calls and returns), for which I essentially filter out some data, another one is ‘pinatrace’, which does not produce directly usable output, because it provides instruction pointer and memory addresses.