12c Multitenant internals: PDB_PLUG_IN_VIOLATIONS

In the previous post I’ve done some DDL on a common user to show how this is replayed later for PDBs that were not opened at that time. But what happens when one of the DDL fails on one PDB?

12c Multitenant internals: PDB replay DDL for common users

In multitenant, you can create common Users, Roles, and Profiles. You create them in CDB$ROOT, with the CONTAINER=ALL clause (which is optional because it is the only possible value when connected to CDB$ROOT) but they are visible to all containers. As the goal of multitenant is to avoid to duplicate common metadata to all containers, You may think that they are visible through those magic metadata links. But that’s actually wrong: they are simply replicated with a very simple mechanism: the DDL for common objects is replayed into each user PDB.

I’m connected to CDB2’s CDB$ROOT and I have two pluggable databases:

SQL> show pdbs
------ -------- ---- ---- ----------

PDB1 is opened and PDB2 is closed.

Introduction to pinatrace annotate version 2: a look into latches again

This post is an introduction to pinatrace annotate version 2, which is a tool to annotate the output of the Intel Pin tools ‘pinatrace’ tool.

The pinatrace tool generates a file with every single memory access of a process. Please realise what this means: this is every single read from main memory or write to main memory from the CPU. This allows you to get an understanding what happens within a C function. This means you can determine what information or data is accessed in what function. Needless to say this is a tool for internals investigations and research, not something for normal daily database maintenance and support. Also, the performance of the process that you attached to is severely impacted, and it can only be turned off by stopping the process. Do not use this on a production database, use this at your own risk for research and investigational purposes only.

Multitenant internals: INT$ and INT$INT$ views

This month, I’ll talk – with lot of demos – about multitenant internals at DOAG conference. CaptureMultitenantInternals

Multitenant dictionary: what is consolidated and what is not

The documentation says that for Reduction of duplication and Ease of database upgrade the Oracle-supplied objects such as data dictionary table definitions and PL/SQL packages are represented only in the root.

Unfortunately, this is only partly true. System PL/SQL packages are only in root but system table definition are replicated into all PDBs.

This post is an extension of a previous blog post which was on 12cR1. This one is on 12cR2.

Oracle C functions annotations

Warning! This is a post about Oracle database internals for internals lovers and researchers. For normal, functional administration, this post serves no function. The post shows a little tool I created which consists of a small database I compiled with Oracle database C function names and a script to query it. The reason that keeping such a database makes sense in the first place, is because the Oracle C functions for the Oracle database are setup in an hierarchy based on the function name. This means you can deduct what part of the execution you are in by looking at the function name; for example ‘kslgetl’ means kernel service lock layer, get latch.

To use this, clone git repository at

Free Webinar – How Oracle Works!

Next Tuesday (19th September) I am doing a free webinar for ProHuddle. It lasts under an hour and is an introduction to how some of the core parts of the Oracle RDBMS work, I call it “The Heart of Oracle: How the Core RDBMS Works”. Yes, I try and explain all of the core Oracle RDBMS in under an hour! I’m told I just about manage it. You can see details of the event and register for it here. I’ve done this talk a few times at conferences now and I really like doing it, partly as it seems to go down so well and people give me good feedback about it (and occasionally bad feedback, but I’ll get on to that).

The full table scan direct path read decision for version 12.2

This post is about the decision the Oracle database engine makes when it is using a full segment scan approach. The choices the engine has is to store the blocks that are physically read in the buffercache, or read the blocks into the process’ PGA. The first choice is what I refer to as a ‘buffered read’, which places the block in the database buffercache so the process itself and other processes can bypass the physical read and use the block from the cache, until the block is evicted from the cache. The second choice is what is commonly referred to as ‘direct path read’, which places the blocks physically read into the process’ PGA, which means the read blocks are stored for only a short duration and is not shared with other processes.

When UPDATE becomes an INSERT

During a research for VOODOO, we came across a lot of interesting stuff inside REDO.
One of my favourites is an UPDATE, becoming an INSERT </p />

    	  	<div class=

When UPDATE becomes an INSERT

During a research for VOODOO, we came across a lot of interesting stuff inside REDO.
One of my favourites is an UPDATE, becoming an INSERT </p />

    	  	<div class=