Search

OakieTags

Who's online

There are currently 0 users and 26 guests online.

Recent comments

LOBs

Basicfile LOBs

I wrote a short series a little while ago about some of the nasty things that can happen (and can’t really be avoided) with Basicfile LOBs and recently realised that it needed a directory entry so that I didn’t have to supply 6 URLs if I wanted to point someone to it; so here’s the catalogue:

Securefile space

Here’s a little script I hacked together a couple of years ago from a clone of a script I’d been using for checking space usage in the older types of segments. Oracle Corp. eventually put together a routine to peer inside securefile LOBs:

Basicfile LOBs 6

One of the nice things about declaring your (basicfile) LOBs as “enable storage in row” is that the block addresses of the first 12 chunks will be listed in the row and won’t use the LOB index, so if your LOBs are larger than 3960 bytes but otherwise rather small the LOB index will hold only the timestamp entries for deleted LOBs. This makes it just a little easier to pick out the information you need when things behave strangely, so in this installment of my series I’m going to take about an example with with storage enabled in row.

Basicfile LOBS 5

At the end of the last installment we had seen a test case that caused Oracle to add a couple of redundant new extents to a LOB segment after one process deleted 3,000 LOBs and another four concurrent processes inserted 750 LOBs each a few minutes later (after the undo retention period had elapsed). To add confusion the LOBINDEX seemed to show that all the “reusable” chunks had been removed from the index which suggests that they should have been re-used. Our LOB segment started at 8,192 blocks, is currently at 8,576 blocks and is only using 8,000 of them.

How will things look if I now connect a new session (which might be associated with a different freepool), delete the oldest 3,000 LOBs, wait a little while, then get my original four sessions to do their concurrent inserts again ? And what will things look like after I’ve repeated this cycle several times ?

Basicfile LOBs 4

At the end of the previous installment we saw that a single big batch delete would (apparently) attach all the “reusable” chunks into a single freepool, and asked the questions:

  • Why would the Oracle developer think that this use of one freepool is a good idea ?
  • Why might it be a bad idea ?
  • What happens when we start inserting more data ?

(Okay, I’ll admit it, the third question is a clue about the answer to the second question.)

Basicfile LOBS 3

In the previous article in this mini-series I described how the option for setting freepools N when defining Basicfile LOBs was a feature aimed at giving you improved concurrency for inserts and deletes that worked by splitting the LOBINDEX into 2N sections: N sections to index the current LOB chunks by LOB id, alternating with N sections to map the reusable LOB chunks by deletion time.

In this article we’ll look a little further into the lifecycle of the LOB segment but before getting into the details I’ll just throw out a couple of consequences of the basic behaviour of LOBs that might let you pick the best match for the workload you have to deal with.

Basicfile LOBs 2

There are probably quite a lot of people still using Basicfile LOBs, although Oracle Corp. would like everyone to migrate to the (now default) Securefile LOBs. If you’re on Basicfile, though, and don’t want (or aren’t allowed) to change just yet here are a few notes that may help you understand some of the odd performance and storage effects.

Basicfile LOBs 1

I got a call to a look at a performance problem involving LOBs a little while ago. The problem was with an overnight batch that had about 40 sessions inserting small LOBs (12KB to 22KB) concurrently, for a total of anything between 100,000 and 1,000,000 LOBs per night. You can appreciate that this would eventually become a very large LOB segment – so before the batch started all LOBs older than one month were deleted.

The LOB column had the following (camouflaged) declaration:

Quiz Night

I was setting up a few tests on a copy of 12.1.0.2 recently when I made a mistake creating the table – I forgot to put in a couple of CAST() calls in the select list, so I just patched things up with a couple of “modify column” commands. Since I was planning to smash the table in all sorts of ways and it had taken me several minutes to create the data set (10 million rows) I decided to create a clean copy of the data so that I could just drop the original table and copy back the clean version – and after I’d done this I noticed something a little odd.

Here’s the code (cut down to just 10,000 rows), with a little output:

LOB Space

Following on from a recent “check the space” posting, here’s another case of the code not reporting what you thought it would, prompted by a question on the OTN database forum about a huge space discrepancy in LOBs.

There’s a fairly well-known package called dbms_space that can give you a fairly good idea of the space used by a segment stored in a tablespace that’s using automatic segment space management. But what can you think when a piece of code (written by Tom Kyte, no less) reports the following stats about your biggest LOB segment: