Search

OakieTags

Who's online

There are currently 0 users and 35 guests online.

Recent comments

Oracle XE

The Oracle wait interface granularity of measurement

The intention of this blogpost is to show the Oracle wait time granularity and the Oracle database time measurement granularity. One of the reasons for doing this, is the Oracle database switched from using the function gettimeofday() up to version 11.2 to clock_gettime() to measure time.

This switch is understandable, as gettimeofday() is a best guess of the kernel of the wall clock time, while clock_gettime(CLOCK_MONOTONIC,…) is an monotonic increasing timer, which means it is more precise and does not have the option to drift backward, which gettimeofday() can do in certain circumstances, like time adjustments via NTP.

The first thing I wanted to proof, is the switch of the gettimeofday() call to the clock_gettime() call. This turned out not to be as simple as I thought.

PL/SQL context switch, part 2

This is the second blogpost on using PL/SQL inside SQL. If you landed on this page and have not read the first part, click this link and read that first. I gotten some reactions on the first article, of which one was: how does this look like with ‘pragma udf’ in the function?

Pragma udf is a way to speed up using PL/SQL functions in (user defined function), starting from version 12. If you want to know more about the use of pragma udf, and when it does help, and when it doesn’t, please google for it.

create or replace function add_one( value number ) return number is
        pragma udf;
        l_value number(10):= value;
begin
        return l_value+1;
end;
/

select sum(add_one(id)) from t2;

As you can see, really the only thing you have to do is add ‘pragma udf’ in the declaration section of PL/SQL.

PL/SQL context switch

Whenever you use PL/SQL in SQL statements, the Oracle engine needs to switch from doing SQL to doing PL/SQL, and switch back after it is done. Generally, this is called a “context switch”. This is an example of that:

-- A function that uses PL/SQL 
create or replace function add_one( value number ) return number is
        l_value number(10):= value;
begin
        return l_value+1;
end;
/
-- A SQL statement that uses the PL/SQL function
select sum(add_one(id)) from t2;

Of course the functionality of the function is superfluous, it can easily be done in ‘pure’ SQL with ‘select sum(id+1) from t2’. But that is not the point.
Also, I added a sum() function, for the sake of preventing output to screen per row.

Introducing stapflame, extended stack profiling using systemtap, perf and flame graphs

There’s been a lot of work in the area of profiling. One of the things I have recently fallen in love with is Brendan Gregg’s flamegraphs. I work mainly on Linux, which means I use perf for generating stack traces. Luca Canali put a lot of effort in generating extended stack profiling methods, including kernel (only) stack traces and CPU state, reading the wait interface via direct SGA reading and kernel stack traces and getting userspace stack traces using libunwind and ptrace plus kernel stack and CPU state. I was inspired by the last method, but wanted more information, like process CPU state including runqueue time.

Oracle 12 and latches, part 3

This post is about manually calling and freeing a shared latch. Credits should go to Andrey Nikolaev, who has this covered in his presentation which was presented at UKOUG Tech 15. I am very sorry to see I did miss it.

Essentially, if you follow my Oracle 12 and shared latches part 2 blogpost, which is about shared latches, I showed how to get a shared latch:

SQL> oradebug setmypid
Statement processed.
SQL> oradebug call ksl_get_shared_latch 0x94af8768 1 0 2303 16
Function returned 1

Which works okay, but leaves a bit of a mess when freed:

Direct path and buffered reads again: compressed tables.

In the previous post on the decision between buffered and direct path reads I showed the decision is depended on the version. Up to and including version 11.2.0.2 the size of a segment needs to be five times small table threshold in order to be considered for direct path reads, and starting from 11.2.0.3 the database starts considering direct path reads starting from small table threshold. The lower limit just discussed is small table threshold or five times small table threshold with lower versions, upper limit is called “very large object threshold” (VLOT) and is five times the size of the buffercache, which is the threshold after which a table scan always is going via direct path.

Direct path and buffered reads again.

Since the direct path feature for serial processes was discovered after it became available in Oracle 11.2.0.1 (as far as I know, I haven’t checked Oracle 11.1), there have been a lot of blog posts on when this happens. A lot of these do not specify the Oracle version, which is a failure in my opinion. There are different decisions made in different versions.

The purpose of this blogpost is to show the results of my tests on when the Oracle database engine switches from buffered to direct path reads and vice versa. There probably are decisions made by the database engine for this feature based on internal kept statistics, like general activity and object usage, which means my tests might be different in your database. For that purpose I included an anonymous PL/SQL block in this post so you can replay the same test in your own database, except for the table, which you have to create yourself.

Oracle 12 and latches

Oracle DBAs who are so old that they remember the days before Oracle 11.2 probably remember the tuning efforts for latches. I can still recall the latch number for cache buffers chains from the top of my head: number 98. In the older days this was another number, 157.

But it seems latches have become less of a problem in the modern days of Oracle 11.2 and higher. Still, when I generate heavy concurrency I can see some latch waits. (I am talking about you and SLOB mister Closson).

I decided to look into latches on Oracle 12.1.0.2 instance on Oracle Linux 7. This might also be a good time to go through how you think they work for yourself, it might be different than you think or have been taught.

Investigating the full table direct path / buffered decision.

A lot of blogposts and other internet publications have been written on the full segment scan behaviour of a serial process starting from Oracle version 11gR2. This behaviour is the Oracle engine making a decision between scanning the blocks of a segment into the Oracle buffercache or scanning these blocks into the process’ private process global area (PGA). This decision is even more important on the Exadata platform, because the Oracle engine must have made the decision to read the blocks into the process’ PGA in order to be able to do a smartscan. This means that if you are on Oracle 11gR2 already, and thinking about using the Exadata platform, the wait event ‘direct path read’ gives you an indication on how much potentially could be offloaded on Exadata, if you keep all the settings the same.

Reading Oracle memory dumps

Every DBA working with the Oracle database must have seen memory dumps in tracefiles. It is present in ORA-600 (internal error) ORA-7445 (operating system error), system state dumps, process state dumps and a lot of other dumps.

This is how it looks likes: