Search

Top 60 Oracle Blogs

Recent comments

Oracle

Kernel NFS fights back… Oracle throughput matches Direct NFS with latest Solaris improvements

After my recent series of postings, I was made aware of David Lutz’s blog on NFS client performance with Solaris.  It turns out that you can vastly improve the performance of NFS clients using a new parameter to adjust the number of client connections.

root@saemrmb9> grep rpcmod /etc/system
set rpcmod:clnt_max_conns=8

This parameter was introduced in a patch for various flavors of Solaris.  For details on the various flavors, see David Lutz’s recent blog entry on improving NFS client performance.  Soon, it should be the default in Solaris making out-of-box client performance scream.

DSS query throughput with Kernel NFS

I re-ran the DSS query referenced in my last entry and now kNFS matches the throughput of dNFS with 10gigE.


Kernel NFS throughput with Solaris 10 Update 8 (set rpcmod:clnt_max_conns=8)

This is great news for customers not yet on Oracle 11g.  With this latest fix to Solaris, you can match the throughput of Direct NFS on older versions of Oracle.  In a future post, I will explore the CPU impact of dNFS and kNFS with OLTP style transactions.

Posted in Oracle, Storage Tagged: 11g, 7410, analytics, database, dNFS, NAS, NFS, Oracle, performance, Solaris, Sun, tuning

Force Cursor Invalidation

Many times it occurs that an inappropriate execution plan is used which was produced by using the current values of bind variables provided at the time of the hard parse. But later on the variables change so much that another execution plan would be required. Unfortunately there is no automatism in 9i and 10g that would spot this fact. Oracle finally resolved this problem in 11g.

The trick is to virtually set the statistics for the object which is involved in the query. What I mean by virtually is that I read the current statistics and store the same statistics back what makes no harm but the side effect is that the cursor is invalidated and hence it will be re-parsed and hopefully this time optimized for the right values of bind variables.

Here is the code:

CREATE OR REPLACE PROCEDURE Invalidate_statistics (
p_ownname VARCHAR2,
p_tabname VARCHAR2
) IS
m_srec DBMS_STATS.STATREC;

Direct NFS vs Kernel NFS bake-off with Oracle 11g and Solaris… and the winner is

NOTE::  Please see my next entry on Kernel NFS performance and the improvements that come with the latest Solaris.

==============

After experimenting with dNFS it was time to do a comparison with the “old” way.  I was a little surprised by the results, but I guess that really explains why Oracle decided to embed the NFS client into the database :)

bake-off with OLTP style transactions

This experiment was designed to load up a machine, a T5240, with OLTP style transactions until no more CPU available.  The dataset was big enough to push about 36,000 IOPS read and 1,500 IOPS write during peak throughput.  As you can see, dNFS performed well which allowed the system to scale until DB server CPU was fully utilized.   On the other hand, Kernel NFS throttles after 32 users and is unable to use the available CPU to scale transactional throughput.

lower cpu overhead yields better throughput

A common measure for benchmarks is to figure out how many transactions per CPU are possible.  Below, I plotted the CPU content needed for a particular transaction rate.  This chart shows the total measured CPU (user+system) to for a given TPS rate.


dNFS vs kNFS (TPS/CPU)

As expected, the transaction rate per CPU is greater when using dNFS vs kNFS.  Please do note, that this is a T5240 machine that has 128 threads or virtual CPUs.  I don’t want to go into semantics of sockets, cores, pipelines, and threads but thought it was at least worth noting.  Oracle sees a thread of a T5240 as a CPU, so that is what I used for this comparison.

silly little torture test

When doing the OLTP style tests with a normal sized SGA, I was not able to fully utilize the 10gigE interface or the Sun 7410 storage.   So, I decided to do a silly little micro benchmark with a real small SGA.  This benchmark just does simple read-only queries that essentially result in a bunch of random 8k IO.  I have included the output from the Fishworks analytics below for both kNFS and dNFS.


Random IOPS with kNFS and Sun Open Storage


Random IOPS with dNFS and Sun 7410 open storage

I was able to hit ~90K IOPS with 729MB/sec of throughput with just one 10gigE interface connected to Sun 7140 unified storage.  This is an excellent result with Oracle 11gR2 and dNFS for a random test IO test… but there is still more bandwidth available.  So, I decided to do a quick DSS style query to see if I could break the 1GB/sec barrier.

===dNFS===
SQL> select /*+ parallel(item,32) full(item) */ count(*) from item;
 COUNT(*)
----------
 40025111
Elapsed: 00:00:06.36

===kNFS===
SQL> select /*+ parallel(item,32) full(item) */ count(*) from item;
 COUNT(*)
----------
 40025111

Elapsed: 00:00:16.18

kNFS table scan


dNFS table scan

Excellent, with a simple scan I was able to do 1.14GB/sec with dNFS more than doubling the throughput of kNFS.

configuration notes and basic tuning

I was running on a T5240 with Solaris 10 Update 8.

$ cat /etc/release
Solaris 10 10/09 s10s_u8wos_08a SPARC
Copyright 2009 Sun Microsystems, Inc.  All Rights Reserved.
Use is subject to license terms.
Assembled 16 September 2009

This machine has the a built-in 10gigE interface which uses multiple threads to increase throughput.  Out of the box, there is very little to tuned as long as you are on Solaris 10 Update 8.  I experimented with various settings, but found that only basic tcp settings were required.

ndd -set /dev/tcp tcp_recv_hiwat 400000
ndd -set /dev/tcp tcp_xmit_hiwat 400000
ndd -set /dev/tcp tcp_max_buf 2097152
ndd -set /dev/tcp tcp_cwnd_max 2097152

Finally, on the storage front, I was using the Sun Storage 7140 Unified storage server as the NFS server for this test.  This server was born out of the Fishworks project and is an excellent platform for deploying NFS based databases…. watch out NetApp.

what does it all mean?

dNFS wins hands down.  Standard kernel NFS only essentially allows one client per “mount” point.  So eventually, we see data queued to a mount point.  This essentially clips the throughput far too soon.   Direct NFS solves this problem by having each Oracle shadow process mount the device directly.  Also with dNFS, all the desired tuning and mount point options are not necessary.  Oracle knows what options are most efficient for transferring blocks of data and configures the connection properly.

When I began down this path of discovery, I was only using NFS attached storage because nothing else was available in our lab… and IO was not initially a huge part of the project at hand.  Being a performance guy who benchmarks systems to squeeze out the last percentage point of performance, I was skeptical about NAS devices.  Traditionally, NAS was limited by slow networks and clumsy SW stacks.   But times change.   Fast 10gigE networks and Fishworks storage combined with clever SW like Direct NFS really showed this old dog a new trick.

Posted in Oracle, Storage Tagged: 11g, 7410, analytics, dNFS, fishworks, NAS, NFS, Oracle, performance, Solaris, Sun

The Core Performance Fundamentals Of Oracle Data Warehousing – Introduction

At the 2009 Oracle OpenWorld Unconference back in October I lead a chalk and talk session entitled The Core Performance Fundamentals Of Oracle Data Warehousing. Since this was a chalk and talk I spared the audience any powerpoint slides but I had several people request that make it into a presentation so they could share [...]

Book review: Oracle Data Guard 11g Handbook

I just finished reading Oracle Data Guard Handbook written by Larry Carpenter, Joseph Meeks, Charles Kim, Bill Burke, Sonya Carothers, Joydip Kundu, Michael Smith and Nitin Vengurlekar. In 544 pages you will learn everything you need to know about Data Guard. This well written book begins with a lengthy introduction to the Data Guard architecture [...]

Monitoring Direct NFS with Oracle 11g and Solaris… pealing back the layers of the onion.

When I start a new project, I like to check performance from as many layers as possible.  This helps to verify things are working as expected and helps me to understand how the pieces fit together.  My recent work with dNFS and Oracle 11gR2, I started down the path to monitor performance and was surprised to see that things are not always as they seem.  This post will explore the various ways to monitor and verify performance when using dNFS with Oracle 11gR2 and Sun Open StorageFishworks“.

why is iostat lying to me?

iostat(1M)” is one of the most common tools to monitor IO.  Normally, I can see activity on local devices as well as NFS mounts via iostat.  But, with dNFS, my device seems idle during the middle of a performance run.

bash-3.0$ iostat -xcn 5
cpu
us sy wt id
8  5  0 87
extended device statistics
r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
0.0    6.2    0.0   45.2  0.0  0.0    0.0    0.4   0   0 c1t0d0
0.0    0.0    0.0    0.0  0.0  0.0    0.0    0.0   0   0 toromondo.west:/export/glennf
cpu
us sy wt id
7  5  0 89
extended device statistics
r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
0.0   57.9    0.0  435.8  0.0  0.0    0.0    0.5   0   3 c1t0d0
0.0    0.0    0.0    0.0  0.0  0.0    0.0    0.0   0   0 toromondo.west:/export/glennf

From the DB server perspective, I can’t see the IO.  I wonder what the array looks like.

what does fishworks analytics have to say about IO?

The analytics package available with fishworks is the best way to verify performance with Sun Open Storage.  This package is easy to use and indeed I was quickly able to verify activity on the array.

There are 48,987 NFSv3 operations/sec and ~403MB/sec going through the nge13 interface.  So, this array is cooking pretty good.  So, let’s take a peek at the network on the DB host.

nicstat to the rescue

nicstat is wonderful tool developed by Brendan Greg at Sun to show network performance.  Nicstat really shows you the critical data for monitoring network speeds and feeds by displaying packet size, utilization, and rates of the various interfaces.

root@saemrmb9> nicstat 5
Time          Int   rKB/s   wKB/s   rPk/s   wPk/s    rAvs    wAvs %Util    Sat
15:32:11    nxge0    0.11    1.51    1.60    9.00   68.25   171.7  0.00   0.00
15:32:11    nxge1  392926 13382.1 95214.4 95161.8  4225.8   144.0  33.3   0.00

So, from the DB server point of view, we are transferring about 390MB/sec… which correlates to what we saw with the analytics from Fishworks.  Cool!

why not use DTrace?

Ok, I wouldn’t be a good Sun employee if I didn’t use DTrace once in a while.  I was curious to see the Oracle calls for dNFS so I broke out my favorite tool from the DTrace Toolkit. The “hotuser” tool shows which functions are being called the most.  For my purposes, I found an active Oracle shadow process and searched for NFS related functions.

root@saemrmb9> hotuser -p 681 |grep nfs
^C
oracle`kgnfs_getmsg                                         1   0.2%
oracle`kgnfs_complete_read                                  1   0.2%
oracle`kgnfswat                                             1   0.2%
oracle`kgnfs_getpmsg                                        1   0.2%
oracle`kgnfs_getaprocdata                                   1   0.2%
oracle`kgnfs_processmsg                                     1   0.2%
oracle`kgnfs_find_channel                                   1   0.2%
libnfsodm11.so`odm_io                                       1   0.2%
oracle`kgnfsfreemem                                         2   0.4%
oracle`kgnfs_flushmsg                                       2   0.4%
oracle`kgnfsallocmem                                        2   0.4%
oracle`skgnfs_recvmsg                                       3   0.5%
oracle`kgnfs_serializesendmsg                               3   0.5%

So, yes it seems Direct NFS is really being used by Oracle 11g.

performance geeks love V$ tables

There are a set of V$ tables that allow you to sample the performance of the performance of dNFS as seen by Oracle.  I like V$ tables because I can write SQL scripts until I run out of Mt. Dew.  The following views are available to monitor activity with dNFS.

  • v$dnfs_servers: Shows a table of servers accessed using Direct NFS.
  • v$dnfs_files: Shows a table of files now open with Direct NFS.
  • v$dnfs_channels: Shows a table of open network paths (or channels) to servers for which Direct NFS is providing files.
  • v$dnfs_stats: Shows a table of performance statistics for Direct NFS.

With some simple scripting, I was able to create a simple script to monitor the NFS IOPS by sampling the v$dnfs_stats view.  This script simply samples the nfs_read and nfs_write operations, pauses for 5 seconds, then samples again to determine the rate.

timestmp|nfsiops
15:30:31|48162
15:30:36|48752
15:30:41|48313
15:30:46|48517.4
15:30:51|48478
15:30:56|48509
15:31:01|48123
15:31:06|48118.8

Excellent!  Oracle shows 48,000 NFS IOPS which agrees with the analytics from Fishworks.

what about the AWR?

Consulting the AWR, shows “Physical reads” in agreement as well.

Load Profile              Per Second    Per Transaction   Per Exec   Per Call
~~~~~~~~~~~~         ---------------    --------------- ---------- ----------
      DB Time(s):               93.1            1,009.2       0.00       0.00
       DB CPU(s):               54.2              587.8       0.00       0.00
       Redo size:            4,340.3           47,036.8
   Logical reads:          385,809.7        4,181,152.4
   Block changes:                9.1               99.0
  Physical reads:           47,391.1          513,594.2
 Physical writes:                5.7               61.7
      User calls:           63,251.0          685,472.3
          Parses:                5.3               57.4
     Hard parses:                0.0                0.1
W/A MB processed:                0.1                1.1
          Logons:                0.1                0.7
        Executes:           45,637.8          494,593.0
       Rollbacks:                0.0                0.0
    Transactions:                0.1

so, why is iostat lying to me?

iostat(1M) monitors IO to devices and nfs mount points.  But with Oracle Direct NFS, the mount point is bypassed and each shadow process simply mounts files directly.  To monitor dNFS traffic you have to use other methods as described here.  Hopefully, this post was instructive on how to peel back the layers in-order to gain visibility into dNFS performance with Oracle and Sun Open Storage.

Posted in Oracle, Storage Tagged: 7410, analytics, dNFS, monitoring, network, NFS, Oracle, performance, Solaris

Oracle Database 11g Release 2 for Solaris x86-64 Now Available

The Solaris x86-64 port of Oracle Database 11g Release 2 can now be downloaded from OTN. Get it while it’s hot!
Tweet This Post

Oracle 11gR2 Database Flash Cache Patch For Oracle Enterprise Linux

Just a quick note that there is now a patch for the 11.2 Oracle Enterprise Linux (OEL) database ports to enable the database flash cache (not to be confused with the Exadata flash cache). Go to the My Oracle Support site [link] and search for patch 8974084 – META BUG FOR FLASH CACHE 11.2PL [...]

4th Dutch Planboard Oracle DBA Symposium

Last Tuesday I presented at, and attended, the 4th Dutch Planboard Oracle DBA Symposium and here are my impressions about this wonderful event. The symposium offered ten presentations, divided into two parallel tracks with each presentation taking approximately one hour. All presentations featured hard-core DBA topics or topics very closely related to DBA work. The [...]

Born Again Classic Metalink

On November 6th MyOracleSupport went into production to replace Metalink. MyOracleSupport is build using Flash technology which isn’t totally accessible to visually impaired people who rely on screen-readers. Although Flash can be made accessible, it remains difficult to use in my opinion and I prefer using an HTML interface where available. When logging in to [...]