Search

Top 60 Oracle Blogs

Recent comments

performance

Min/Max upgrade

Here’s a nice little optimizer enhancement that appeared in 12.2 to make min/max range scans (and full scans) available in more circumstances. Rather than talk through it, here’s a little demonstration:

Index Bouncy Scan 2

I wrote a note some time last year about taking advantage of the “index range scan (min/max)” operation in a PL/SQL loop to find the small number distinct values in a large single column index efficiently (for example an index that was not very efficient but existed to avoid the “foreign key locking” problem. The resulting comments included pointers to other articles that showed pure SQL solutions to the same problem using recursive CTEs (“with” subqueries) from Markus Winand and Sayan Malakshinov: both writers also show examples of extending the technique to cover more cases than the simple list of distinct values.

Attribute clustering….super cool

I’ve spoken about attribute clustering before here, here and here. So from that you can probably glean that I’m a fan.

I recently spoke about an example of this as well during my AskTOM Office Hours session which you can watch below:

You need scaling huh? Maybe it’s just ego

I’ve just come back from OracleCode Singapore.  It was a great event – the venue was awesome and the attendees were engaged and interested in the content. But there was one thing that I found amusing (disturbing perhaps?) is the number of times I had people approach me on the topic of scaling.  Conversation would typically run along the lines of:

“What is your recommendation for scaling?”

which almost suggests that scaling is of itself, the end solution here.  Not “Here is function X, and I need it to scale”, or “My business requirement is X, and it needs to scale” but just “I need to scale”

A look into oracle redo, part 11: log writer worker processes

Starting from Oracle 12, in a default configured database, there are more log writer processes than the well known ‘LGWR’ process itself, which are the ‘LGnn’ processes:

$ ps -ef | grep test | grep lg
oracle   18048     1  0 12:50 ?        00:00:13 ora_lgwr_test
oracle   18052     1  0 12:50 ?        00:00:06 ora_lg00_test
oracle   18056     1  0 12:50 ?        00:00:00 ora_lg01_test

These are the log writer worker processes, for which the minimal amount is equal to the amount public redo strands. Worker processes are assigned to a group, and the group is assigned to a public redo strand. The amount of worker processes in the group is dependent on the undocumented parameter “_max_log_write_parallelism”, which is one by default.

A look into oracle redo: index and overview

I gotten some requests to provide an overview of the redo series of blogposts I am currently running. Here it is:

A look into oracle redo, part 10: commit_wait and commit_logging

The redo series would not be complete without writing about changing the behaviour of commit. There are two ways to change commit behaviour:

1. Changing waiting for the logwriter to get notified that the generated redo is persisted. The default is ‘wait’. This can be set to ‘nowait’.
2. Changing the way the logwriter handles generated redo. The default is ‘immediate’. This can be set to ‘batch’.

There are actually three ways these changes can be made:
1. As argument of the commit statement: ‘commit’ can be written as ‘commit write wait immediate’ (statement level).
2. As a system level setting. By omitting an explicit commit mode when executing the commit command, the setting as set with the parameters commit_wait (default: wait) and commit_logging (default: immediate).
3. As a session level setting. By omitting an explicit commit mode, but by setting either commit_wait or commit_logging it overrides the settings at the system level.

A look into oracle redo, part 9a: commit – concurrency considerations

During the investigations of my previous blogpost about what happens during a commit and when the data becomes available, I used breaks in gdb (GNU debugger) at various places of the execution of an insert and a commit to see what is visible for other sessions during the various stages of execution of the commit.

However, I did find something else, which is very logical, but is easily overlooked: at certain moments access to the table is blocked/serialised in order to let a session make changes to blocks belonging to the table, or peripheral blocks like undo, for the sake of consistency. These are changes made at the physical layer of an Oracle segment, the logical model of Oracle says that writers don’t block readers.

A look into oracle redo, part 9: commit

The previous blogpost talked about a simple insert, this blogpost investigates what happens when the DML is committed. Of course this is done with regular commit settings, which means means they are not touched, which means commit_logging is set to immediate and commit_wait is set to wait as far as I know. The documentation says there is no default value, and the settings are empty in all parameter views. In my humble opinion, if you must change the commit settings in order to make your application perform usable with the database, something is severely wrong somewhere.

This blogpost works best if you thoroughly gone through the previous post. I admit it’s a bit dry and theoretical, but you will appreciate the knowledge which you gained there, because it directly applies to a commit.

First let’s look at the flow of functions for the commit:

Hybrid histograms

Just a quick post here so I could consolidate some information about histograms in 12c.