Search

Top 60 Oracle Blogs

Recent comments

subqueries

Subquery Effects

Towards the end of last year I used a query with a couple of “constant” subqueries as a focal point for a blog note on reading parallel execution plans. One of the comments on that note raised a question about cardinality estimates and, coincidentally, I received an email about the cost calculations for a similar query a few days later.

Unfortunately there are all sorts of anomalies, special cases, and changes that show up across versions when subqueries come into play – it’s only in recent versions of 11.2, for example, that a very simple example I’ve got of three equivalent statements that produce the same execution plan report the same costs and cardinality. (The queries are:  table with IN subquery, table with EXISTS subquery, table joined to “manually unnested” subquery – the three plans take the unnested subquery shape.)

IN/EXISTS bugs

Here’s a simple data set – I’m only interested in three of the columns in the work that follows, but it’s a data set that I use for a number of different models:

Existence

A recent question on the OTN Database Forum asked:

I need to check if at least one record present in table before processing rest of the statements in my PL/SQL procedure. Is there an efficient way to achieve that considering that the table is having huge number of records like 10K.

I don’t think many readers of the forum would consider 10K to be a huge number of records; nevertheless it is a question that could reasonably be asked, and should prompt a little discssion.

First question to ask, of course is: how often do you do this and how important is it to be as efficient as possible. We don’t want to waste a couple of days of coding and testing to save five seconds every 24 hours. Some context is needed before charging into high-tech geek solution mode.

Most Recent

There’s a thread on the OTN database forum at present asking for advice on optimising a query that’s trying to find “the most recent price” for a transaction given that each transaction is for a stock item on a given date, and each item has a history of prices where each historic price has an effective start date. This means the price for a transaction is the price as at the most recent date prior to the transaction date.

Table Duplication

I’ve probably seen a transformation like the following before and I may even have written about it (though if I have I can’t the article), but since it surprised me when I was experimenting with a little problem a few days ago I thought I’d pass it on as an example of how sophisticated the optimizer can be with query transformation.  I’ll be talking about the actual problem that I was working on in a later post so I won’t give you the table and data definitions in this post, I’ll just show some SQL and its plan:

Parallel Fun

As I write, there’s an ongoing thread on Oracle-L that started with the (paraphrased) question: “I’ve got this query that returns 7 million rows; when I change it to ‘select count(*)’ it returns in 4 seconds but when we display the full result set on screen it takes hours, and every second or two the screen pauses; how do I make it go faster.”

The general rapid response was: “You shouldn’t be running 7M rows to a screen – the time is the time for the network traffic and display.”

Plan depth

A recent posting on OTN reminded me that I haven’t been poking Oracle 12c very hard to see which defects in reporting execution plans have been fixed. The last time I wrote something about the problem was about 20 months ago referencing 11.2.0.3; but there are still oddities and irritations that make the nice easy “first child first” algorithm fail because the depth calculated by Oracle doesn’t match the level that you would get from a connect-by query on the underlying plan table. Here’s a simple fail in 12c:

Subquery with OR

Prompted by a pingback on this post, followed in very short order by a related question (with a most gratifying result) on Oracle-L, I decided to write up a note about another little optimizer enhancement that appeared in 12c. Here’s a query that differs slightly from the query in the original article:

Costing Bug

It’s amazing how you can find little bugs (or anomalies) as soon as you start to look closely at how things work in Oracle. I started to write an article for All Things Oracle last night about execution plans with subqueries, so wrote a little script to generate some sample data, set up the first sample query, checked the execution plan, and stopped because the final cost didn’t make sense. Before going on I should point out that this probably doesn’t matter and probably wouldn’t cause a change in the execution plan if the calculation were corrected – but it is just an interesting indication of the odd things that can happen when sections of modular code are combined in an open-ended way. Here’s the query (running on 11.2.0.4) with execution plan:

12c fixed subquery

Here’s a simple little demonstration of an enhancement to the optimizer in 12c that may result in some interesting changes in execution plans as cardinality estimates change from “guesses” to accurate estimates.