Search

OakieTags

Who's online

There are currently 0 users and 25 guests online.

Recent comments

Tuning

Functions & Subqueries

I think the “mini-series” is a really nice blogging concept – it can pull together a number of short articles to offer a much better learning experience for the reader than they could get from the random collection of sound-bites that so often typifies an internet search; so here’s my recommendation for this week’s mini-series: a set of articles by Sayan Malakshinov a couple of years ago comparing the behaviour of Deterministic Functions and Scalar Subquery Caching.

http://orasql.org/2013/02/10/deterministic-function-vs-scalar-subquery-caching-part-1/

http://orasql.org/2013/02/11/deterministic-function-vs-scalar-subquery-caching-part-2/

count(*) – again !

Because you can never have enough of a good thing.

Here’s a thought – The optimizer doesn’t treat all constants equally.  No explanations, just read the code – execution plans at the end:

Oracle database operating system memory allocation management for PGA – part 2: Oracle 11.2

This is the second part of a series of blogpost on Oracle database PGA usage. See the first part here. The first part described SGA and PGA usage, their distinction (SGA being static, PGA being variable), the problem (no limitation for PGA allocations outside of sort, hash and bitmap memory), a resolution for Oracle 12 (PGA_AGGREGATE_LIMIT), and some specifics about that (it doesn’t look like a very hard limit).

But this leaves out Oracle version 11.2. In reality, the vast majority of the database that I deal with at the time of writing is at version 11.2, and my guess is that this is not just the databases I deal with, but a general tendency. This could change in the coming time with the desupport of Oracle 11.2, however I suspect the installed base of Oracle version 12 to increase gradually and smoothly instead of in a big bang.

12c Fixed Subquery

It’s been about 8 months since I posted a little note about a “notable change in behaviour” of the optimizer when dealing with subqueries in the where clause that could be used to return a constant, e.g.:


select
	*
from	t1
where	id between (select 10001 from dual)
	   and     (select 90000 from dual)
;

There’s been a note at the start of the script ever since saying: Check if this is also true for any table with ‘select fixed_value from table where primary = constant’ I finally had a few minutes this morning (San Francisco time) to check – and it does, in both 11.2.0.4 and 12.1.0.2. With the t1 table from the previous article run the following:

Quiz night

Here’s a script to create a table, with index, and collect stats on it. Once I’ve collected stats I’ve checked the execution plan to discover that a hint has been ignored (for a well-known reason):

Recursive subquery factoring

This is possibly my longest title to date – I try to keep them short enough to fit the right hand column of the blog without wrapping – but I couldn’t think of a good way to shorten it (Personally I prefer to use the expression CTE – common table expression – over “factored subquery” or “subquery factoring” or “with subquery”, and that would have achieved my goal, but might not have meant anything to most people.)

If you haven’t come across them before, recursive CTEs appeared in 11.2, are in the ANSI standard, and are (probably) viewed by Oracle as the strategic replacement for “connect by” queries. Here’s a simple (and silly) example:

12c Subquery Factoring

From time to time I’ve posted a reminder that subquery factoring (“with subquery”) can give you changes in execution plans even if the subquery that you’ve taken out of line is written back inline by Oracle rather than being materialized. This can still happen in 12c – here’s a sample query in the two forms with the result sets and execution plans.  First, the “factored” version:

Minus

Here’s a little script to demonstrate an interesting observation that appeared in my email this morning (that’s morning Denver time):

Pagination

I was involved in a thread on Oracle-L recently started with the question: “How many LIOs is too many LIOs”. Rather than rewrite the whole story, I’ve supplied a list of links to the contributions I made, in order – the final “answer” is actually the answer to a different question – but travels an interesting path to get there.#

Null Quiz

Here’s an example I saw a few months ago of the confusion caused by NULL. As the owner of the problem put it: the first query, run from SQL*Plus for testing purposes, takes no time to complete; but when “put into a pl/sql cursor” (as shown in the second query) it takes ages to complete.

What’s going on ?


    select id
         , description
         , inventory
    from the_table
    where category =  nvl(null, category);

    --

    open c_results for
        select id
             , description
             , inventory
        from the_table
        where category =  nvl(p_user_category, category);
    fetch c_results into v_id, v_description, v_inventory;
    close c_results;

After pondering the problem for a while the OP managed to get the required level performance by changing the predicate to this: