Search

Top 60 Oracle Blogs

Recent comments

12c MView refresh

Some time ago I wrote a blog note describing a hack for refreshing a large materialized view with minimum overhead by taking advantage of a single-partition partitioned table. This note describes how Oracle 12c now gives you an official way of doing something similar – the “out of place” refresh.

I’ll start by creating a matieralized view and creating a couple of indexes on the resulting underlying table; then show you three different calls to refresh the view. The materialized view is based on all_objects so it can’t be made available for query rewrite (ORA-30354: Query rewrite not allowed on SYS relations) , and I haven’t created any materialized view logs so there’s no question of fast refreshes – but all I intend to do here is show you the relative impact of a complete refresh.


create materialized view mv_objects nologging
build immediate
refresh on demand
as
select
        *
from
        all_objects
;

begin
	dbms_stats.gather_table_stats(
		ownname		 => user,
		tabname		 =>'mv_objects',
		method_opt 	 => 'for all columns size 1'
	);
end;
/

create index mv_obj_i1 on mv_objects(object_name) nologging compress;
create index mv_obj_i2 on mv_objects(object_type, owner, data_object_id) nologging compress 2;

This was a default install of 12c, so there were about 85,000 rows in the view. You’ll notice that I’ve created all the objects as “nologging” – this will have an effect on the work done during some of the refreshes.

Here are the three variants I used – all declared explicitly as complete refreshes:


begin
	dbms_mview.refresh(
		list			=> 'MV_OBJECTS',
		method			=> 'C',
		atomic_refresh		=> true
	);
end;
/

begin
	dbms_mview.refresh(
		list			=> 'MV_OBJECTS',
		method			=> 'C',
		atomic_refresh		=> false
	);
end;
/

begin
	dbms_mview.refresh(
		list			=> 'MV_OBJECTS',
		method			=> 'C',
		atomic_refresh		=> false,
		out_of_place		=> true
	);
end;
/

The first one (atomic_refresh=>true) is the one you have to use if you want to refresh several materialized views simultaneously and keep them self consistent, or if you want to ensure that the data doesn’t temporarily disappear if all you’re worried about is a single view. The refresh works by deleting all the rows from the materialized view then executing the definition to generate and insert the replacement rows before committing. This generates a lot of undo and redo – especially if you have indexes on the materialized view as these have to be maintained “row by row” and may leave users accessing and applying a lot of undo for read-consistency purposes. An example at a recent client site refreshed a table of 6.5M rows with two indexes, taking about 10 minutes to refresh, generating 7GB of redo as it ran, and performing 350,000 “physical reads for flashback new”. This strategy does not take advantage of the nologging nature of the objects – and as a side effect of the delete/insert cycle you’re likely to see the indexes grow to roughly twice their optimal size and you may see the statistic “recursive aborts on index block reclamation” climbing as the indexes are maintained.

The second option (atomic_refresh => false) is quick and efficient – but may result in wrong results showing up in any code that references the materialized view (whether explicitly or by rewrite). The session truncates the underlying table, sets any indexes on it unusable, then reloads the table with an insert /*+ append */. The append means you get virtually no undo generated, and if the table is declared nologging you get virtually no redo. In my case, the session then dispatched two jobs to rebuild the two indexes – and since the indexes were declared nologging the rebuilds generated virtually no redo. (I could have declared them with pctfree 0, which would also have made them as small as possible).

The final option is the 12c variant – the setting atomic_refresh => false is mandatory if we want  out_of_place => true. With these settings the session will create a new table with a name of the form RV$xxxxxx where xxxxxx is the hexadecimal version of the new object id, insert the new data into that table (though not using the /*+ append */ hint), create the indexes on that table (again with names like RV$xxxxxx – where xxxxxx is the index’s object_id). Once the new data has been indexed Oracle will do some name-switching in the data dictionary (shades of exchange partition) to make the new version of the materialized view visible. A quirky detail of the process is that the initial create of the new table and the final drop of the old table don’t show up in the trace file  [Ed: wrong, see comment #1] although the commands to drop and create indexes do appear. (The original table, though it’s dropped after the name switching, is not purged from the recyclebin.) The impact on undo and redo generation is significant – because the table is empty and has no indexes when the insert takes place the insert creates a lot less undo and redo than it would if the table had been emptied by a bulk delete – even though the insert is a normal insert and not an append; then the index creation honours my nologging definition, so produces very little redo. At the client site above, the redo generated dropped from 7GB to 200MB, and the time dropped to 200 seconds which was 99% CPU time.

Limitations, traps, and opportunities

The manuals say that the out of place refresh can only be used for materialized views that are joins or aggregates and, surprisingly, you actually can’t use the method on a view that simply extracts a subset of rows and columns from a single table.  There’s a simple workaround, though – join the table to DUAL (or some other single row table if you want to enable query rewrite).

Because the out of place refresh does an ordinary insert into a new table the resulting table will have no statistics – you’ll have to add a call to gather them. (If you’ve previously been using a non-atomic refreshes this won’t be a new problem, of course). The indexes will have up to date statistics, of course, because they will have been created after the table insert.

The big opportunity, of course, is to change a very expensive atomic refresh into a much cheaper out of place refresh – in some special cases. My client had to use the atomic_refresh=>true option in 11g because they couldn’t afford to leave the table truncated (empty) for the few minutes it took to rebuild; but they might be okay using the out_of_place => true with atomic_refresh=>false in 12c because:

  • the period when something might break is brief
  • if something does go wrong the users won’t get wrong (silently missing) results, they’ll an Oracle error (probably ORA-08103: object no longer exists)
  • the application uses this particular materialized view directly (i.e. not through query rewrite), and the query plans are all quick, light-weight indexed access paths
  • most queries will probably run correctly even if they run through the moment of exchange

I don’t think we could guarantee that last statement – and Oracle Corp. may not officially confirm it – and it doesn’t matter how many times I show queries succeeding but it’s true. Thanks to “cross-DDL read-consistency” as it was called in 8i when partition-exchange appeared and because the old objects still exist in the data files, provided your query doesn’t hit a block that has been overwritten by a new object, or request a space management block that was zero-ed out on the “drop” a running query can keep on using the old location for an object after it has been replaced by a newer version. If you want to make the mechanism as safe as possible you can help – put each relevant materialized view (along with its indexes) into its own tablespace so that the only thing that is going to overwrite an earlier version of the view is the stuff you create on the next refresh.