There are currently *0 users* and *20 guests* online.

Here’s a wonderful lesson from Cary Millsap – be very careful if you ever want to sell him anything – that reminded me of a Powerpoint slide I had produced for a presentation a few years ago. It took me a little time to track it down but I finally found the slide, reproduced below, in a presentation called: “The Burden of Proof” that I had given for the Ann Arbor Oracle User Group in 2002. (The picture of the Earth is the Apollo 17 image from NASA):

Dominic Delmolino * wrote a follow-up* to Cary’s post, ending with a question about generalising the formula for a circle – and listing a few results relating to regular polygons (or N-gons), observing that the results he got seemed to be approaching Cary’s circle result as N – the number of sides of the polygon – increased. So is there an opportunity for a proof lurking there somewhere ? Yes and writing a note about it seemed to be much more entertaining than doing real work, so here is it.

We start with a regular N-gon, and clarify what operation we are doing to “raise the string above the surface”. (The sketch is a little crude, I was using Powerpoint at the time.)

The diagram shows a smaller hexagon inside a larger hexagon. To construct the larger hexagon from the smaller we draw a line from the centre of the original to the middle of one of the sides, and extend it outwards. We then slide the side in the direction of this line a distance h, leaving the side parallel to its original position. Repeat for all six sides of the hexagon.

We now have an “exploded” hexagon. To complete the larger hexagon, we need to take each of its sides and extend them at both ends by a distance d. The change in the perimeter from the smaller hexagon to the larger hexagon is then “2d * number of sides” (12d in the case of the hexagon), and we have to ask ourselves if we can work out a way of expressing d in terms of other values that we already know.

Looking at the diagram (and allowing for the poor quality of drawing) you should be able to note the similar triangles that allow us to say that d/h = tan(x) — sorry, you have to know some geometry and trigonometry at this point.

Since we have a regular N-gon, we know that x = pi/N radians — sorry, you have to work in radians, not degrees.

Substituting we have:

change in perimeter =

2d * N =

2 * h * tan(x) * N =

2h * N tan(pi/N)

Note that this formula is independent of the size of the original N-gon.

And now we get to the interesting bit – can we relate this formula to Cary’s formula where, for a circle, the change in perimeter was 2 * change in radius * pi. The answer is yes – but only if you know your Maclaurin series. The * Maclaurin series* for tan(x) – where x is measured in radians and has a modulus less than pi/2 – is:

x + x^{3} + 2x^{5}/15 + …

In our case we have x = pi/N, which is going to make our formula a little messy:

pi/N + pi^{3}/3N^{3} + 2 pi^{5}/15N^{5} + …

If we slot this into our formula for the change in perimeter above we get:

2h * N * (pi/N + pi^{3}/3N^{3} + 2 pi^{5}/15N^{5} + …)

and now we can multiply out N through the series to get:

2h * (pi + pi^{3}/3N^{2} + 2 pi^{5}/15N^{4} + …)

Consider then that a circle is the limit of a regular N-gon as N tends to infinity. Let N tend to infinity in the final formula and every term except the first one vanishes – so at the limit the formula becomes 2h * pi, which is exactly the formula that Cary derived in his blog.

I don’t think I got to Maclaurin series until I was about 15 – but I wouldn’t be particularly surprised if Cary’s children get there a little bit sooner.

- May 2011 (86)
- April 2011 (81)
- March 2011 (132)
- February 2011 (106)
- January 2011 (126)
- December 2010 (112)
- November 2010 (107)
- October 2010 (99)
- September 2010 (185)
- August 2010 (129)
- July 2010 (78)
- June 2010 (77)
- May 2010 (87)
- April 2010 (132)
- March 2010 (140)
- February 2010 (40)
- January 2010 (74)
- December 2009 (56)
- November 2009 (38)
- October 2009 (42)
- September 2009 (32)
- August 2009 (13)
- July 2009 (15)
- June 2009 (17)
- May 2009 (22)
- April 2009 (25)
- March 2009 (31)
- February 2009 (15)
- January 2009 (11)
- December 2008 (4)

## Recent comments

38 weeks 6 days ago

39 weeks 2 days ago

1 year 4 weeks ago

1 year 4 weeks ago

1 year 18 weeks ago

1 year 23 weeks ago

1 year 24 weeks ago

1 year 25 weeks ago

1 year 32 weeks ago

1 year 34 weeks ago